

June 2009 6690 Decision Mathematics D2 Mark Scheme

Question Number	Scheme			
Q1 (a) (b)	There are more tasks than people.			
	Adds a row of zeros	B1	(1)	
(c)	$\begin{bmatrix} 15 & 11 & 14 & 12 \\ 13 & 8 & 17 & 13 \\ 14 & 9 & 13 & 15 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 4 & 0 & 3 & 1 \\ 5 & 0 & 9 & 5 \\ 5 & 0 & 4 & 6 \\ 0 & 0 & 0 & 0 \end{bmatrix}; \rightarrow \begin{bmatrix} 3 & 0 & 2 & 0 \\ 4 & 0 & 8 & 4 \\ 4 & 0 & 3 & 5 \\ 0 & 1 & 0 & 0 \end{bmatrix}$ $\text{Either} \begin{bmatrix} 3 & 3 & 2 & 0 \\ 1 & 0 & 5 & 1 \\ 1 & 0 & 0 & 2 \\ 0 & 4 & 0 & 0 \end{bmatrix}$	B1;M1		
	Or $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 0 & 6 & 4 \\ 2 & 0 & 1 & 5 \\ 0 & 3 & 0 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 5 & 3 \\ 1 & 0 & 0 & 4 \\ 0 & 4 & 0 & 2 \end{bmatrix}$ $J-4, M-2, R-3, (D-1)$	A 1	(6)	
(d)			, ,	
	Minimum cost is (£)33.	B1	(1)	
			[9]	

Question Number	Scheme	Mai	·ks
Q2 (a)	In the classical problem each vertex must be visited only once. In the practical problem each vertex must be visited at least once.	B2, 1,	0 (2)
(b)	A F D B E C A {1 4 6 3 5 2 } 21 + 38 + 58 + 36 + 70 + 34 = 257	M1 A1 A1	(3)
(c)	257 is the better upper bound, it is lower.	B1ft	(1)
(d)	R.M.S.T. C 34 A 21 F 38 D 67	M1 A1	
	Lower bound is $160 + 36 + 58 = 254$	M1A1 (4)
(e)	Better lower bound is 254, it is higher	B1ft	
(f)	254 < optimal ≤ 257	B1	(2)
	Notes: (a) 1B1: Generous, on the right lines bod gets B1 2B1: cao, clear answer. (b) 1M1:Nearest Neighbour each vertex visited once (condone lack of return to start) 1A1: Correct route cao – must return to start. 2A1: 257 cao (c) 1B1ft: ft their lowest. (d) 1M1: Finding correct RMST (maybe implicit) 160 sufficient 1A1: cao tree or 160. 2M1:Adding 2 least arcs to B, 36 and 58 only 2A1: 254 (e) 1B1ft: ft their highest (f) 1B1: cao		[12]

Question Number	Scheme				
Q3 (a) (b)	Row minima {-5, -4, -2} row maximin = -2 Column maxima {1, 6, 13} col minimax = 1 -2 ≠ 1 therefore not stable. Column 1 dominates column 3, so column 3 can be deleted.				
(c)	A plays 1 A plays 2 A plays 3 B plays 1 5 -1 2 B plays 2 -6 4 -3	B1 B1	(2)		
(d)	Let B play row 1 with probability p and row 2 with probability (1-p) If A plays 1, B's expected winnings are 11p - 6 If A plays 2, B's expected winnings are 4 - 5p If A plays 3, B's expected winnings are 5p - 3				
	11p - 6 4 2 0 0 -2 -4 -6	M1 A1			
	$5p-3=4-5p$ $10p=7$ $p=\frac{7}{10}$	M1			
	B should play 1 with a probability of 0.7 2 with a probability of 0.3 and never play 3	A1			
	The value of the game is 0.5 to B	A1	(7) [13]		

Ques Num		Scheme	Mark	(S
Q4	(a)	Value of cut $C_1 = 34$; Value of cut $C_2 = 45$	B1; B1	(2)
	(b)	S B F G T or S B F E T – value 2 Maximum flow = 28	M1 A1 A1=B1	(3)
		Notes: (a) 1B1: cao 2B1: cao (b) 1M1: feasible flow-augmenting route and a value stated 1A1: a correct flow-augmenting route and value 1A1=B1: cao		[5]
Q5	(2)			
	(a)	$x = 0, \ y = 0, \ z = 2$	B2,1,0	(2)
	(b)	$x = 0, y = 0, z = 2$ $P - 2x - 4y + \frac{5}{4}r = 10$	M1 A1	(2)
				[4]
		Notes: (a) 1B1: Any 2 out of 3 values correct 2B1: All 3 values correct. (b) 1M1: One equal sign, modulus of coefficients correct. All the right ingredients. 1A1: cao – condone terms of zero coefficient		

Question Number	Scheme	Ma	arks
Q6 (a)	The supply is equal to the demand	B1	(1)
(b)	A B C X 16 6 Y 9 8 Z 15	B1	(1)
(c)		M1 A1	(3)
(d)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1	
	XC = 7 - 0 - 20 = -13 YA = 16 + 5 - 17 = 4 YB = 12 + 5 - 8 = 9 ZB = 10 + 11 - 8 = 13	A1	(3)
		M1 A1	
	A B C X 1 15 6 Y 17 Z 15	A1	(3)
	Cost (£) 524	B1	(1) [12]

uestion umber				Scheme		Mark
(a)	Stage	State (in £1000s)	Action (in £1000s)	Dest. (in £1000s)	Value (in £1000s)	
		250	250	0	300*	
	1	200	200	0	240*	
		150	150	0	180*	
		100	100	0	120*	
		50	50	0	60* 0*	
		250	0	0	Ü	
		250	280	50	$\begin{array}{rcl} 200 + 0 &= 280 \\ 235 + 60 &= 295 \end{array}$	
			150	100	$\frac{233 + 60 - 293}{190 + 120 = 310*}$	
			100	150	120 + 120 = 310 $125 + 180 = 305$	1M1 A1
			50	200	65 + 240 = 305	IMIAI
			0	250	03 + 240 = 303 0 + 300 = 300	
	2	200	200	0	235 + 0 = 235	
	2	200	150	50	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
			100	100	190 + 60 = 230 $125 + 120 = 245$	A1
			50	150	65 + 180 = 245	
			0	200	0 + 240 = 240	
		150	150	0	190 + 0 = 190*	2M1
			100	50	125 + 60 = 185	
			50	100	65 + 120 = 185	A1
			0	150	0 + 180 = 180	
		100	100	0	125 + 0 = 125*	A1
			50	50	65 + 60 = 125*	
			0	100	0 + 120 = 120	
		50	50	0	65 + 0 = 65*	
		20	0	50	0 + 60 = 60	
		0	0	0	0 + 0 = 0*	3M1
	3	250	250	0	300 + 0 = 300	A1ft
		250	200	50	230 + 65 = 295	
			150	100	$\frac{230 + 63 - 295}{170 + 125 = 295}$	
			100	150	110 + 120 = 300	
			50	200	55 + 250 = 305	
			0	250	0 + 310 = 310*	
	Maxim	um income £31	0 000 Scheme Invest (in £100	1 2	2 3 50 0	B1 B1 (
(b)	State:	Scheme being Money availab Amount chose	considered le to invest		·· · · · · · · · · · · · · · · · · · ·	B1 B1 B1

Question Number	Scheme	Marks
Q8		
	E.g. Add 6 to make all elements positive $\begin{bmatrix} 4 & 14 & 5 \\ 13 & 10 & 3 \\ 7 & 1 & 10 \end{bmatrix}$	B1
	Let Laura play 1, 2 and 3 with probabilities p_1 , p_2 and p_3 respectively Let $V = \text{value of game} + 6$	B1
	e.g. Maximise P = V Subject to: $V-4p_1-13p_2-7p_3 \leq 0$	B1 M1
	$V - 14p_1 - 10p_2 - p_3 \le 0$ $V - 5p_1 - 3p_2 - 10p_3 \le 0$	A3,2ft,1ft ,0
	$p_1 + p_2 + p_3 \le 1$	(7)
	$p_1, p_2, p_3 \ge 0$	
	Notes: 1B1: Making all elements positive 2B1: Defining variables 3B1: Objective, cao word and function 1M1: At least one constraint in terms of their variables, must be going down columns. Accept = here. 1A1ft: ft their table. One constraint in V correct. 2A1ft: ft their table. Two constraints in V correct. 3A1: CAO all correct.	[7]
	Alt using x_i method	
	Now additionally need: let $x_i = \frac{p_i}{v}$ for 2B1	
	minimise $(P) = x_1 + x_2 + x_3 = \frac{1}{v}$	
	subject to:	
	$4x_1 + 13x_2 + 7x_3 \ge 1$	
	$14x_1 + 10x_2 + x_3 \ge 1$	
	$5x_1 + 3x_2 + 10x_3 \ge 1$	
	$x_i \ge 0$	