g

Thank You

Thanks for downloading this sample chapter of Keep Your Ruby on Rails App
Healthy!

The premium edition of the Keep Your Ruby on Rails App Healthy of is a
complete rewrite of the original course.

As well as going into more depth about the topics in the original course, it
also greatly expands on the content that is covered.

This sample chapter - Using Object Storage For Assets - is entirely new. I hope
you find it valuable, and would love to get your feedback.

Please email me (chris@plymouthsoftware.com), or drop me a message on
Twitter (@cblunt).

Thank you!

mailto:chris@plymouthsoftware.com
https://twitter.com/cblunt

Chris Blunt May 2017

Use Object Storage for Assets

Media assets that are generated by your app (such as user profile photos,
uploaded images, video files, etc.) should be stored in some form of object
storage. Whilst there are plenty of CDN services, one of the most popular is
Amazon's S3 service, which is low-cost and allows infinite storage, as well as
other tools such as life-cycle management.

Why use Object Storage?

Object storage breaks the dependency between your app's server (and code),
and its media assets such as images uploaded by your users. In doing this,
your app becomes easier to scale across multiple servers, and even move
between different servers or hosting providers.

As an example, let's say your app has 20GB of user-uploaded content, stored
on the same server as your app. As that storage begins to run low, you need to
scale your server either vertically (add more storage, RAM, CPU, etc.), or
horizontally (create a new server and load-balance requests between them).

Scaling vertically is potentially wasteful - you'll be adding unnecessary
resources to your server, just to get more storage. Scaling horizontally is
difficult, because all your assets are on server A, and without some work
configuring network mounts and so on, server B can't access them.

What about Block Storage?

Block storage offers a middle-ground between storing your assets locally, and
using an object storage provider such as S3. Block storage volumes attach to
your server, and appear as mounted volumes. This means they can be
accessed directly like any other part of the file system.

You could, for example, mount a block storage volume to /assets on your
app's server, and you would be separating your app's content from its server.
In theory, the block storage could be moved to another server if you needed to
scale up. However, there are restrictions. For example, Digital Ocean's block
storage volumes can only be attached to one server (droplet) at a time, so
scaling your app horizontially is more complicated.

https://aws.amazon.com/s3/

Using block storage would also leave serving the assets up to your app (or
configuring apache/nginx to serve the assets directly). Object storage services
can serve assets directly (or via CDN), removing the need for a user's browser
to hit your app's server.

Object storage is (generally) pay-for-what-you-use, and limitless in size.
Block storage still has a (virtual) size. You'll need to provision a block storage
volume (say 10GB), and scale that up as it begins to fill. The knock-on effect
of this is that you'll be paying for storage you don't use.

Whilst block storage is an option, I much prefer to delegate media and
content to an Object Storage provider, such as S3.

Using Amazon S3 to Store Your App's Assets

Let's get started by setting up an S3 bucket, and configuring your app to use it
when storing uploaded assets. If you don't already have an Amazon AWS
account, you can create a new account and take advantage of the 12-month
"free usage tier'.

I'll also be using the Amazon AWS CLI tool to interact with AWS, rather than
the web-based console. However, you can replicate any of these steps using
the web console if you prefer.

If you don't already have it set up, install and configure the AWS CLI tool. If
you're using Homebrew on macOS, the tools can be installed with:

$ brew install awscli
$ aws configure

For other platforms, or if you're not using Homebrew, follow the official
instructions. Once the AWS CLI tool is installed and configured, we can set up
a new user and bucket in which to store your app's assets.

Setting up a Bucket

S3 stores files (objects) in buckets. A bucket can be thought of as a volume or
disk. Each bucket has a globally unique name, i.e. if someone else has used a
bucket name, then you cannot use it. Using a reverse domain name (e.g.
com.yourcompany.app.assets) is usually a good way to namespace your
buckets.

https://aws.amazon.com/
https://aws.amazon.com/cli/

You should also avoid using periods (.) in your bucket name, as it can cause
SSL verification errors when connecting to the bucket from your app. It's best
to replace periods with a hyphen (-) in your bucket name. Using the example
above, the bucket would be called com-yourcompany-app-assets.

Permissions and Policies

Access to buckets is configured through permissions and policies for different
users and accounts. When creating a bucket, you can specify that it is
accessible only to specific users, or to the public (anonymous access). You can
also specify different read/write permissions. These permissions apply
globally to the bucket and all sub-folders.

For more intricate access controls, you use Policies to specify different levels
of access. For example, a policy can be used to allow only certain users to
upload files into certain folders in the bucket.

ProTip 1 Amazon's permissions and policies are extremely flexible and
powerful, and consequently, can become very complicated. We'll be setting up
a basic security policy here, but you should read Amazon's documentation to
fully understand the various options available to you.

ProTip 2 Strictly speaking, S3 has no concept of folders and subfolders -
every file (object) sits at the top level. However, for simplicity, slashes (/) in
the object's filename are interpreted to be folder-style prefixes. A more
thorough discussion of this is available in Amazon's documentation.

Create a new user for your app

Start by creating a new user in your Amazon account. This user will be used to
represent your Rails app when communicating with AWS. Your can then grant
this user account (your app) permission to upload files into the bucket. This
helps to keep your AWS account secure, and prevent "'access creep" that could
occur if using your root account credentials to communicate with S3.

Create a new user now using the AWS CLI tool:

http://docs.aws.amazon.com/AmazonS3/latest/UG/FolderOperations.html

$ aws iam create-user ——user—-name my-rails—app
$ aws iam create—access—key ——user—name my-rails—app
{
"AccessKey": {
"UserName": "my-rails-app",
"Status'": "Active",
"CreateDate": "2017-05-10T09:48:00.83872",
"SecretAccessKey": "abcdef1234567/abcdefghIJKLmn@pgRStUV",
"AccessKeyId": "ABCD1234DEFG56789"
I
}

This will do 2 things:

e Create a new user account in your AWS account called my-rails-app

e Create an access key for the my-rails-app user. An access key allows
your app to access the AWS account without supplying a
username/password, but instead providing an Access Key and Secret key.

Important You should store the SecretAccessKey somewhere secure (I
recommend somewhere like LastPass, 1Password or KeePass). You cannot
retrieve the SecretAccessKey, so if lost you'll need to generate a new access
key for the user.

Create the Bucket

With our new user and access key set up, we can create an S3 bucket with a
simple call to the Amazon CLI tool. Give your new bucket a unique name, e.g.
your-app-name-assets.

$ aws s3api create-bucket —--bucket your-app-name-assets ——acl public-
read ——region eu-west-1

Note: I've created this bucket in the eu-west-1 (Ireland) region. You may
want to create your bucket in a region where you are based, e.g. us-west-1,
cn-north-1, ap-northeast-1, etc. You can see the available regions at http:/
/docs.aws.amazon.com/general/latest/gr/rande.html#s3_ region

Configure a Bucket Policy

The bucket was created with a public-read access control list (ACL),
meaning that any content uploaded to the bucket will be publicly accessible.
Our example app will be uploading public data (e.g. user profile images), so
this is fine.

http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region

However, we'll need to provide an additional policy granting our app (or,
more accurately, the my-rails-app user we created in the previous step)
permission to upload content into the bucket. We can do that by specifying a
policy for the bucket.

First, we'll need to get the arn for our user. This is the unique identifier for
our user, and can be retrieved using the iam get-user command:

$ aws iam get-user ——user my-rails—app
{
"User": {
"UserName": "my-rails-app",
"Path": "/",
"CreateDate'": "2017-05-10T09:47:397",
"UserId": "ABCD1234DEFG56789",
"Arn": "arn:aws:iam::012345678:user/my—-rails—app"
b
b

Create a new document on your Desktop called policy.json, and paste the arn
value from the previous step into the Principle:Aws line. Similarly, make
sure the Resource line uses the arn for your bucket.

// ~/Desktop/policy.json
{
"Id": "Policyl1234567890",
"Version": "2012-10-17",
"Statement": |
{
"Sid": "Stmt123456778890",
"Action": |
"s3:DeleteObject",
"s3:PutObject",
"s3:PutObjectAcl”
1,
"Effect": "Allow",
"Resource": "arn:aws:s3:::your—app—name-assets/x",
"Principal”: [
"AWS": ["arn:aws:iam::012345678:user/my-rails—app"]
]

Save the policy file, and finally apply it to your bucket with the following
command:

$ aws s3api put-bucket-policy —-bucket your—app-name-assets ——policy
file:///path/to/your/Desktop/policy.json

Configure Your App

The next step is to configure your app's uploader to use S3, rather than local
file storage. When dealing with uploads, I prefer to use the popular
Carrierwave gem, but the setup will be similar with uploaders such as
Paperclip and Dragonfly.

Add Carrierwave and fog to your app's Gemfile. Fog is the gem used by
Carrierwave to communicate with remote services, such as S3:

Gemfile

gem 'carrierwave', '~> 1.1'
gem 'fog-aws', '~> 1.3.0'

gem 'mini_magick', '~> 4.7.0'

$ bundle install

Next, create an initializer for Carrierwave in config/initializers/carrierwave.rb:

CarrierWave.configure do |config|

config.fog_provider = 'fog/aws'

config.fog_credentials = {
provider: "AWS"',
aws_access_key_id: ENV. fetch('S3_ACCESS_KEY_ID', ''),
aws_secret_access_key: ENV.fetch('S3_SECRET_ACCESS_KEY', ''),
region: 'eu-west-1' # Remember to set this to the

same as your S3 bucket

I

config.fog_directory = ENV.fetch('S3_BUCKET_NAME', '')

config.fog_public = true

config.fog_use_ssl_for_aws = true

config.fog_attributes
{365.day.to_i}" }

{ 'Cache-Control' => "max-age=#

config.storage = :fog
end

Note Using ENV. fetch() allows us to supply a default value (in this case, an
empty string ' ') if the environment variable is not configured. This will allow
tasks such as asset precompilation (bin/rails assets:precompile) to run
without needing to specify the S3 credentials.

https://github.com/carrierwaveuploader/carrierwave
https://github.com/thoughtbot/paperclip
https://github.com/markevans/dragonfly
https://github.com/fog/fog

Now you can create a Carrierwave uploader and mount it into your model. In
the example below, we'll create an uploader for a user avatar, and mount it
into a User model:

$ bin/rails g uploader avatar

Remove the placeholder content that Carrierwave generates, leaving just the
following:

app/uploaders/avatar_upload.rb
class AvatarUploader < CarrierWave::Uploader::Base
include CarrierWave::MiniMagick

def store_dir
"uploads/#{model.class.to_s.underscore}/#{mounted_as}/#
{model. id}"
end

Resize to 200x200
process resize_to_fill: [200, 200]

Create different versions of your uploaded files:
version :thumb do

process resize_to_fit: [60, 60]
end

def extension_whitelist
%w(jpg jpeg png)
end
end

This uploader will resize any uploads to 200x200 pixels, and create a
thumbnail at 60x60 pixels. Let's create the user model in which to mount the
uploader:

$ bin/rails g model user email:string name:string avatar:string
$ bin/rails db:migrate

Next, update the generated user.rb model to the following:

app/models/user.rb

class User < ApplicationRecord
validates :email, presence: true
validates :name, presence: true
validates :avatar, presence: true

mount_uploader :avatar, AvatarUploader # Mount your uploader to the
avatar attribute
end

Finally, we'll generate a simple CRD UI for creating a new user record:

$ bin/rails g controller users index new

app/views/users/index.html.erb
<hl>Users</h1>

<%= link_to 'Add User', new_user_path %>

<table>
<% @users.each do |u| %>
<tr>
<td><%= image_tag u.avatar.url(:thumb) %></td>
<td><%= u.name %></td>
<td><%= link_to 'Delete', user_path(u), method: 'delete' %>
</td>
</tr>
<% end %>
</table>

app/views/users/new.html.erb
<h1l>New User</hl>

<%= form_with(model: @user) do |f| %>

<p>

<%= f.label :email %>

<%= T.text_field :email %>
</p>
<p>

<%= f.label :name %>

<%= f.text_field :name %>
</p>
<p>

<%= f.label :avatar %>

<%= f.file_field :avatar %>
</p>
<%= f.submit %>

app/controllers/users_controller.rb
class UsersController < ApplicationController
def index
@users = User.order('name').all
end

def new
@Quser = User.new

end

def create
@user = User.new(user_params)

if @Quser.save

flash['notice'] = 'User added'
redirect_to users_url
else
flash['alert']l = '"Error adding user'
render 'new'
end
end

def destroy
User.find(params|[:id]).destroy
flash['notice'] = 'User deleted'

redirect_to users_url
end

private

def user_params
params.require(:user).permit(:email, :name, :avatar)
end
end

config/routes.rb

Rails.application.routes.draw do
resources :users, only: [:index, :new, :create]
...

end

With everything wired up, it's time to start your app. Remember that you'll
need to supply the S3_ACCESS_KEY_ID, S3_SECRET_ACCESS_KEY and
S3 BUCKET_NAME environment variables.

For now, you can supply these values directly on the command line, but you'll
probably want to use an . env file or similar, especially when running your
app in production (see Configuring Application Secrets for details on how to
do this)

$ S3_ACCESS_KEY_ID=abcdef1234567/abcdefghIJKLmn@pqRStUV
S3_SECRET_ACCESS_KEY=ABCD1234DEFG56789 S3_BUCKET_NAME=your—-app—-name-—
assets bin/rails server

Open the users admin screen (http://localhost:3000/users if you're using the

example above) and create a new user account, choosing an image file to
upload as the user's avatar.

— C | @ localhost:3000/users/new

New User

Email joe@example.com
Name Joe Bloggs
Avatar Choose file gravatar-2016.jpg

Create User

When the save finishes, you'll see your avatar image in the list:

http://localhost:3000/users

Users
Add User

Chris Delete

= 4]

<html>
» #shadow-root
» <head>..</head:
¥ <body=>
<h1>Users</hl>
<a href="/users
v <table>
¥ <tbody>
Y<tr>
v <td>
<img src="https:// .53.amazonaws. com/uploads/user/avatar/2/thumb gravatar-2816.ijpq"
</td>
<td>Chris</td>
P <td>.</td>
</tr>
</tbody>
</table>

Console Sources Network Performance Memory Application Security Audits Rails Adblock Plus

'>Add User</a=

If you inspect the URL for that image, you'll see that it's served directly from
S3 (<img src="https://your-app—name-
assets.s3.amazonaws.com/uploads/...).

ProTip: You can also verify that the file has been uploaded by listing the
contents of your bucket using the AWS CLI tool:

$ aws s3 1s your—app—-name-assets/ ——recursive
2017-05-10 12:02:50 7529 uploads/user/avatar/1l/image. jpg
2017-05-10 12:02:52 1711 uploads/user/avatar/1/thumb_image. jpg

The tool offers a lot of functionality to manage the files within your S3
bucket, including synchronising contents between buckets, and local folders.
Use aws s3 help for more details on the available commands.

Serve Assets over CDN using CloudFront

Once your app's assets are in object storage, you can configure a CDN service
(such as Amazon CloudFront) to serve those assets more quickly and
efficiently to users, based on their geographic location.

Setting up CloudFront when your objects are stored in S3 is easy, and can be
achieved either through the web-based console, or using the AWS CLI tool. At
the time of writing, the CloudFront CLI tool is in preview, so you'll need to
enable it by issuing the following command:

https://aws.amazon.com/cloudfront/
https://console.aws.amazon.com/

$ aws configure set preview.cloudfront true

Create a Distribution

Start by creating a CloudFront Distribution pointing to your S3 bucket. Once
this is set up, you'll be able to see your distribution's CloudFront domain
name in the console:

$ aws cloudfront create-distribution ——origin-domain-name your—app-
name-assets.s3.amazonaws.com ——region eu-west-1
{
"Distribution": {
"Status": "InProgress",
"DomainName": "al23456cdefg789.cloudfront.net",
"InProgressInvalidationBatches": 0,
"Id": "ABCDEF12345678",
"ARN" :
"arn:aws:cloudfront::1234567890:distribution/ETSJEGAU@DCGZ"
I
"ETag": "ABCDEF12345678",
"Location": "https://cloudfront.amazonaws.com/2017-03—-
25/distribution/ABCDEF12345678"
I

Once created, the domain name returned in the output can be configured in
your app. Similarly, you can use the Id to check the status of the distribution.
A CloudFront distribution can take a little while to set up (set aside 15 minutes
for a @), so you should wait until it reaches the Deployed state before
updating your app:

$ aws cloudfront wait distribution-deployed ——id ETSJEGAU@ODCGZ

Note You can also see the distribution status using the web console:

CloudFront Distributions

Create Distribution Distribution Settings Delete Enable Disable

Viewing:| Any Delivery Method Any State v

Delivery Method ID Domain Name

@ Web .cloudfront.net

https://console.aws.amazon.com/

Configuring Carrierwave for CDN

Finally, we just need to tell Carrierwave (and fog) to use the CloudFront CDN
URL when displaying uploaded files. This is easy to do with an extra
configuration option specifying the Domain CloudFront gave us in the
previous step:

config/initializers/carrierwave.rb
CarrierWave.configure do |config|

...

config.asset_host = 'https://al23456cdefg789.cloudfront.net’
end

With that done, restart your app (remember to supply the environment
variables), and you'll find images are served via CloudFront rather than
directly from your S3 bucket:

Users

Add User

a Chris Delete

Console Sources Network Performance Memory Application Security Audits Rali

<html>
» #shadow-root (open)
» <head>..</head>
¥ <body>
<hl>Users</hl>
Add Use
v <table>
¥ <tbody>
Y<tr>
¥ <td>
img src="https:
</td>
<td>Chris</td>
b <td>.</td>

.cloudfront.net/uploads/user/avatar/2/thumb_gravatar-2016.

[] []
Enjoyed this sample?
Purchase the full course today and receive 17 lessons (over 30,000 words) on
keeping your Rails apps up and running in top condition.
You'll receive the course in PDF, Kindle (.mobi) and .ePub formats.

Save 10% when you purchase using the promo code SAMPLEUP10

https://gum.co/IqRIZ/sampleup10

	Thank You
	Use Object Storage for Assets
	Why use Object Storage?
	Using Amazon S3 to Store Your App's Assets
	Setting up a Bucket
	Permissions and Policies
	Create a new user for your app
	Create the Bucket

	Configure a Bucket Policy

	Configure Your App
	Serve Assets over CDN using CloudFront
	Create a Distribution
	Configuring Carrierwave for CDN

	Enjoyed this sample?
	Buy Now - Save 10%

