INTEGRUM ESG GRAPHQL API MANUAL V2.7 JuL 2024

A step-by-step example of building a query in GraphiQL

Step 1: Use GraphiQL

Go to the public GraphiQL webpage: https://cloud.hasura.io/public/graphigl

Enter our endpoint: https://dashboard.integrumesg.com/graphglapi/v1/graphql

Add YOUR API key which you get from the steps below:

1. Log in to the Integrum ESG Dashboard: https://dashboard.integrumesg.com/dashboard/

2. Click your initials in the top right-hand corner
3. Click “Account”
4. Click “Generate API Key” on the dashboard account settings page

= GraphQL Endpoint
POST https://dashboard.integrumesg.com/graphglapi/vl/graphgl

= Request Headers

ENABLE KEY VALUE
content-type applicatien/json
Authorization Api-Key YOURKEY

Now the explorer shows the APIs available on the left-hand side

Explorer * GraphiQL > Pretily | History | Explorer | | Share Code Exporter | Merge

query MyQuery 1

¥ article_complionce_opi

® article_nine_opi

¥ bosic_needs_grodes_api

* bosic_needs_grodes_opi_agaregate
* business_asctivities

ties_by_pk
ty_companies
ty_conpanies_by_pk

nggregate
latest_year_defoult_profil
latest_year_defoult_profil

» company_api_no_sentiment

* company_opi_no_sentiment_aggregate
* company_opi_vZ

* company_opl_vZ_sggregate

¥ company_opl_with_safeguards

» company_codes

v company_codas_by_pk

sentiment_data
sentiment_dato agaregate

Step 2: The top-level company query

Get the top-level scores for Alphabet from the company_api. Remember that scores need to have a profile id specified

so we use the default equally weighted profile with the “magic” id of -1

Copy

Change Endpoint

£ Docs

We built this by clicking the selections in the company_api — but they do not all fit in the screenshot.

https://cloud.hasura.io/public/graphiql
https://dashboard.integrumesg.com/graphqlapi/v1/graphql
https://dashboard.integrumesg.com/dashboard/

Explorer X GraphiGQL > Prettify History Explorer Share Code Exporter Merge Copy < Docs
» sentiment_score:
v sentiment_score_diff:
» sustainability_grode: ; query Myluery :h R —— P . 2t b
» sustainobility score: + company_api(where: {name: {_eq: phobet"}, profile_id: {_eq: -1}3}) { = Eta : £ .
» sustainability_score_diff: 3 esg_grade T company_opi”: [
* taxo: 4 BSg_SCore c
* ticker: 5 governance_grode “esg_grade”: "B",
¥ usd_erterprise_value: [governance_score "esg_scora": 2.349845713406141,
¥ usd_narket_cop: 7 impact_grode "governance_grade”: "B,
* usd_revenue: a impact_score "governance_score”: 2. 741358045116067,
b article sine 9 name "impact_grade™: "B,
P business_ociivities 1@ 1 "impact_score™: 2.916666753590187,
company_id 1 3 "name”: "Alphabet”
b company_sfdr_article 12 1
country]
currant_yaar h
» custon_metrics ¥
» dimension_scores
» dimension_scores_oggregote
& esg_grade
Edesg.score
esg_score_diff
 governance_grade
A governance_score
govarnance_scora_diff
.
Step 3: Metrics
Now select the metrics from the metric_scores nested element
Explorer x GraphiQL > Prattify Histary Explorer Share Code Exporter Merge Copy < Docs
o . r
isin v Cdata”:
b issue_scores 1+ guery M‘yQuer)I-' i . c " company_api”: [
b lssue_scores_aggregate Zv company_opi(where: {neme: {_eq: “Alphabet'}, profile_id: {_ea: -1}}) { ¢
....e:rlic_lmrcs i esg.grade “esg_grade”: "B,
i‘i:i’::f“‘-“"' = "’f;:;:;; e "esg_score”: Z.349845718486141,
oFFse;' 6 - arnance :EDI"E CEEMETELITE S Ty
) gav L "governance_score": 2, 7413580451 16067,
v order_by: 7 impact_grade :
b where: 8 im ur.t_swr‘e "impact_grade")
awareness_comment 9 na:e - “{mpact_score": 2, 916666753590167,
[awareness_grade 10 metric_scores { "“ﬂ""-‘l: ﬂLDhﬂ?Ct .
[awareness_score 1 description v metric_scores™: [
awareness_score_di ff 12 dimension_type N o il)
compary_id 13 name o description": "Energy consumed as
compary_metric_id 14 parformance_valua Elec . i o
g -"l.‘scr‘- If’:"“'f‘ 15 perfo rmanca:score ::i;x:‘“ o:]_:yzre"' I. { tsu:.t::: ;nat:]i ::‘YI !
dimension_id 16 performance_grade arfy ° L ,)_‘ onsuketion ,
[dimensicn_type 7 awareness_grade REEETOCRNICS volue™: 78324320000008,
b excerpts o] anareness. seore "scrfurrmncc_scort'i
b excerpts_agaregate 19 unit performance_grade” : B
finoncial_year 20 1 "awarenass_grada”: 0
icm 71 "awareness_score": 4,
metric_id 2 3 ¥ nigs "k
metric_sort_pricrity 22 Lin
Step 4: PAIs
Now select the PAIs from the nested pais element
Kl Sy hiQL > Prettify Histary Explarer Share Code Exporter Merge Copy { Docs
111 i
IATvarss. 1a G s A e L nuLL,
i "unit": “FTEs
: mzr}c_s:olr'es_aggr‘eaote 1+ query MyQuery {)
.:.:":\cs_ y_year 2+ compony_opi(where: {nome: {_eq: “Alphebet”}, profile_id: {_eq: -1}1) { 1
B
~vpais 3 egnse i "pais": [
distinct_on: esg-score - i
limit: 5 governance_grade "poi_name": "Emissions to wober™,
affset: B governonce_score "text": "Doto disclosed, no adverse
» arder_by: 7 impact_grade impact™,
» where: 8 impact_score "score™: 3
afficial_metric] nama } :
pai_id 18- metric_scores { o {’
E!pui;l.‘:me.d ll :es:‘n-;:rtm:) “poi_name": "Board gender diversity”,
profite.t imension-type "text": "Dota disclosed, no adverse
Flscore 13 name impact”,
Fltext 14 performance_value "eeore™: 1
¥ portfolio_companies 15 performance_score ' °
¥ portfolio_companies_aggregate 16 performance_grade n {’
u::u_::g_g::: 1]:; awareness_grade "poi_name": “GHG intensity of investee
.
Prr\.-_ 3;rnun:¢' rade 19 M-I:E"ess_smre companies”,
pr 'U'g‘ 'm N .4 I_' o um "text": "Dato disclosed, no adverse
prev_governance_score ¥ _ impact™,
prev_impact_grade 21+ pois { "score™: 2
prev_impact_score 22 pai_name })
prev_sentiment_score £3 text {’
e sustat bt 1y score s reentrs "hata discloved, o ad
pre - e "text": "Dota disclosed, no adverse
Brev}o\.s year 26 3 impact®,
profile_id 27 1 "geore™: 7
b profile_notes 28 ¥)
b profile_sectors L
¥ sector " 1) .
[T T "poai_name”; “GHG emissions”,
"text": "Dota disclosed, no adverse
Betel Ko | Flaname -

Step 5: Overall SFDR Article

Now select the overall SFDR Article from the metrics page, which is another nested element — company _sfdr_article.

Here is the resulting query:

query MyQuery {
company api(where: {name: { eq: "Alphabet"}, profile id: { eq: -1}}) {

esg grade

esg_score

sustainability grade

sustainability score

governance grade

governance_score

impact grade

impact _score

name

metric scores {
description
dimension_type
name
performance value
performance_score
performance grade
awareness grade
awareness _score
unit

}

pais {
pai name
text
score

}

company sfdr article {
article

}

}
}

Detailed Sentiment API

The detailed sentiment (down to 15-minute granularity) is available with the:
company sentiment data

root element.

There is pagination on this table — with a limit of 10000 rows.

The API results can be paginated using the limit and offset parameters.

See the example Python program in the appendix.

Sentiment Granularity
The 15-minute sentiment data has several months’ history. There is another year or so of weekly granularity data.

Sentiment Aggregation
The sentiment_api_v2 offers a rolling seven-day aggregation of sentiment.

query MyQuery {
sentiment api v2(wher
...BasicNeedse: { company: { name: { eq: "Diageo" } } }) {
positive comments
neutral comments
negative comments
end time

PAI Article 9, Taxonomy

Our mappings and assessments are also available via the API.

The taxo, article_nine and pais are array sub-elements nested under the company_api

The company_sfdr_article is an object relationship in the company_api

This example shows fetching each of these elements by adding taxo to the step-by-step example.

query MyQuery {
company_api(where: { company id: { eq: 1 }, profile id: { eq: -1 } }) {

esg_grade

esg _score

company_id

country

isin

name

taxo {
contribution
eu taxo aligned
full text
harm
taxo objective
text

}

article nine {
article 9 requirement
contribution
full text
harm
name
score
text

}

pais {
pai name
score
text

}

company_ sfdr_article {
article

}

}
}

V2 API

The company_api root element was designed for surfacing scores and to handle a wider range of use cases, we also have
a company_api_v2 root element with a more general nesting structure and including sentiment time-series (aggregated
by week)

Sentiment data is available for a different (wider) population of companies as there are data distribution restrictions on
the scores API where source data from other providers has been involved.

This can be useful as it unifies the varying granularity. Other aggregations should be done client side.

Metrics by year and raw metrics

The company_api and the metrics scores nested within it behave like the dashboard and has the current and previous
year scores for each company, where the actual year that it relates to may vary across companies depending on their
reporting dates.

In some integration cases, it can be better to use the actual year, so the metrics_by_year nested element in the company
API has individual entries for each year

query MyQuery {
company api(where: { company id: { eq: 1 }, profile id: { eq: -1 } }) {

esg grade

esg_score

company_id

country

isin

name

metrics by year(where: { metric id: { eq: 44 } }) {
awareness comment
awareness _grade
awareness _score
description
dimension_type
financial year
name
performance comment
performance grade
performance score
performance value
unit

}

}
}

The metrics by year still only covers the current and previous year, as the scores are computed dynamically (according
to the profile) and we have the same coverage as the dashboard.

A deeper history is available for the underlying metric values. There are no dimension or company-level scores calculated
- so no profile is required - and so it is exposed as a v2 API

raw metrics api v2 and nested under company api v2 as raw_metrics
Here is an example of fetching all of the metrics for a company for a particular (non-current) year.

query MyQuery {
company api v2(where: { id: { eq: 1 } }) {
raw metrics(where: { financial year: { _eq: 2018 } }) {
awareness comment
awareness _grade
awareness_score
dimension name
dimension_type
financial year
metric description
metric_display dp
performance value
scaled performance value
metric unit

Business Activities
The (excludable) business activities are nested under the company_api.

Example:

query MyQuery {
company api(where: { company id: { eq: 1 }, profile id: { eq: -1 } }) {

5

country

current _year

esg grade

esg score

business activities {
business activity {

name

}

¥

}
}

Detailed Sentiment Python Example (with pagination)

import requests
import json
import pandas as pd

can get the count with this

ql = """
query MyQuery {
company sentiment data aggregate(where: { company: { name: { eq: "Diageo" } } }) {
aggregate {
count
}
}
}

NOTE: {} in GraphQL are doubled here as we are putting this through the "format" function to inject
the

offset and limit

q2 = """
query MyQuery {{
company sentiment data(where: {{company: {{name: {{ eq: "Diageo"}}}}}}, limit: {0}, offset: {1})
{{
company {{
name
1}
time
sentiment
source
text
1}
1}

url = 'https://dashboard.integrumesg.com/graphqlapi/vl/graphql’

def get graphql(q):
r = requests.post(
url, headers={'Authorization': 'Api-Key XXXX'}, json={'query': q})
print(r.status code)
json_data = json.loads(r.text)
print(json_data)

return (json_data)

count data = get graphqgl(ql)
print(count_data)

limit = 10000

offset = 0

df = None

while True:
g = g2.format(limit, offset)
print(q)
json data = get graphqgl(q)
df2 = pd.json normalize(json _data, record path=[
'data', 'company sentiment data'l)
offset += limit
s = json data['data']['company sentiment']
print(len(s))
df = pd.concat([df, df2])
if len(s) == 0:
break

print(df)

Portfolio and Codes Examples
We can create a portfolio in the Integrum ESG system by uploading it on the dashboard - or via the portfolio API -
described in the Integrum ESG API Portfolio Management document.

An advantage of the manual creation method is that it looks up the given ISINs in a list of all known ISIN mappings and
finds the appropriate company or country if it is covered in the system

The result mapping can be queried in the GraphQL API

query MyQuery {
portfolio companies api(where: { portfolio name: { ilike: "%MyPortfolio" } }) {
name
isin
weighting
}
}

In this example, this is the ISIN that was uploaded in the portfolio definition - and is often different from the primary
ISIN in the company.

And we can use the nested items (like company_scores) from the portfolio companies:

query MyQuery {
portfolio companies api(where: { portfolio name: { ilike: "%MyPortfolio" } }) {
isin
weighting
company_scores(where: { profile id: { eq: -1} }) {
name
esg_score
esg _grade
}
}
}

Note that we do not need a profile id in the where clause for the portfolio companies api as there are no scores
involved - just weightings. But we do need the profile_id for the company_scores.

In V2.3 we have also added the full list of ISIN mappings to the V2 API:

query MyQuery {

company api v2(where: { isins: { code: {

_in:
isin
name

A detailed metric example

fragment Metrics on company api {
sustainability score diff
governance score diff

impact score diff

company_id

}

query Option3($companyId: Int, $profileld: Int, $option3: Boolean =

dimension scores(order _by: {dimension sort priority:

}

name
dimension_ type
tag
awareness_grade
awareness score
awareness score diff
performance grade
performance score
performance score diff
dimension grade
dimension score
dimension score diff
dimension weighting
weighted dimension_score
sector _scores {
awareness grade
performance grade
dimension grade
}

metric_scores(

["DEOOODTROCK8"] } } }) {

asc, dimension_type: desc}) {

where: {profile id: { eq: $profileld}, name: { in: $metricscore_name}}

order by: {metric sort priority: asc}
) {
name
financial year
sector_scores {
awareness grade
performance grade

}

excerpts(where: {company id: { eq: $companyId}}) @include(if: $option3) {

page

report type
image url
score

}

[String]!) {
company_api(
where: {company id: { eq: $companyId}, profile id: { eq: $profileld}}

)

{

...Metrics

true, $metricscore name:

}
}

This example fetches detailed information, including excerpts and image screenshot url for a particual metric for a
particular company.

The url needs to be prefixed with our S3 bucket address of ‘https://s3.eu-west-2.amazonaws.com/integrum-production/’
for fetching.

The example also makes use of graphql fragments which is a good way of building up reuseable elements of graphql
queries.

Bulk Extract Examples

If you want to use the default equally weighted profile then the fastest way is to use the daily extract of scores under the
default equally-weighted profile in company_cube_history The record_date element is the date of the extract.

Compression

A whole extract of companies and metrics runs to 100s MB so is large for individual requests.
Compression can be applied at the content level by requesting gzip as a content type.

This example shows getting an extract from a command line using curl. It could equally be done in Python using a
streaming gzip module.

Note that we can nest the company cube history element under company api v2 as we want to get the primary ISIN as
it is useful to have an identifier for integration.

ENDPOINT=https://dashboard.integrumesg.com/graphqlapi/vl/graphql
q2="
query MyQuery {
company_api v2 {
country
current_year
isin
name
company_cube history(where: {record date: { eq: \\\"2024-01-18\\\"}, yeardiff: { eq: 0}}) {
awareness _grade
awareness_score
level
levell
level2
level3
metric unit
performance _grade
performance score
performance _value
record date
scaled performance value
sd
total grade
total score
weighted dimension score
}
}
}
eq="echo "$g2" | tr '\n' ' '°
curl -H "Authorization:Api-Key XXXX" -H "Content-Type: application/json" -H "Accept-Encoding: gzip" -
X POST -d "{\"query\": \"$eq\"}" $ENDPOINT > bulk.json.gz

https://s3.eu-west-2.amazonaws.com/integrum-production/

Multi-year History Extract

The company_api behaves the same in the dashboard in that it only calculates scores and grades for the current and
previous years. The full history is available in the company cube history all years element. As noted in the API Guide
the scores returned are slightly different as the peer comparisons are all of data in the same financial year.

The structure of the data is very similar to the cube structure above. The data can be extract raw:

query screenerQuery {
company_cube history all years
{
awareness _grade
awareness_score
company_id
country
financial year
level
levell
level2
level3
metric unit
name
parent sector
performance grade
performance _score
performance value
profile id
scaled performance value
sd
sector
sector_id
total grade
total score
universe id
}
}
eq="echo "$q" | tr '\n' ' '°
curl -H "Authorization:Api-Key XXXX" -H "Content-Type: application/json" -H "Accept-Encoding: gzip"
X POST -d "{\"query\": \"$eq\"}" https://dashboard.integrumesg.com/graphqlapi/vl/graphql >
bulk history raw.json.gz

Or nested under the company_api_v2 for more metadata:

query screenerQuery {

company_api v2 {
country
current _year
isin
name

company cube history all years
{
awareness _grade
awareness_score
company_id
country
financial year
level
levell
level2
level3
metric unit
name

10

parent sector
performance_grade
performance score
performance value
profile id
scaled performance value
sd
sector
sector_id
total grade
total score
universe id
}
}
}

eq="echo "$q" | tr '\n' ' '

curl -H "Authorization:Api-Key XXXX" -H "Content-Type: application/json" -H "Accept-Encoding: gzip" -
X POST -d "{\"query\": \"$eq\"}" https://dashboard.integrumesg.com/graphqlapi/vl/graphql >

bulk history.json.gz

Complete Proxy Data

As mentioned in the API guide it is not very efficient to try to get all of the score data for all of the proxy companies
as each region/sector combination will (by definition) have the same data. In this case it’s better to get the proxy scores
separately from the proxy companies.

Firstly the proxy data using the cube api - and using compression as above

g="
query screenerQuery {
proxy cube api(where: {profile id: { eq: -1}, yeardiff: { eq: 0}}) {
awareness _grade
awareness _score
country
level
levell
level2
level3
metric unit
performance_grade
performance score
performance value
scaled performance value
sd
sector
total grade
total score
weighted dimension score
yeardiff
}
}

eq="echo "$q" | tr '\n' ' '’
curl -H "Authorization:Api-Key XXX" -H "Content-Type: application/json" -H "Accept-Encoding: gzip" -X
POST -d "{\"query\": \"$eq\"}" https://dashboard.integrumesg.com/graphqlapi/v1l/graphql

And then the proxyied companies with just the important metadata (name, ISIN, country and sector)

q=ll
query MyQuery {
company api with proxies(where: {profile id: { eq: -1}}) {
country

11

company_id
sector { name }

isin
name
}
}II
eq="echo "$q" | tr '\n' ' '

curl -H "Authorization:Api-Key XXX" -H "Content-Type: application/json" -H "Accept-Encoding: gzip" -X
POST -d "{\"query\": \"$eq\"}" https://dashboard.integrumesg.com/graphqlapi/v1l/graphql

Any questions, please email contact@integrumesg.com
12

	A step-by-step example of building a query in GraphiQL
	Step 1: Use GraphiQL
	Step 2: The top-level company query
	Step 3: Metrics
	Step 4: PAIs
	Step 5: Overall SFDR Article

	Detailed Sentiment API
	Sentiment Granularity
	Sentiment Aggregation

	PAI, Article 9, Taxonomy
	V2 API
	Metrics by year and raw metrics
	Business Activities
	Detailed Sentiment Python Example (with pagination)
	Portfolio and Codes Examples
	A detailed metric example
	Bulk Extract Examples
	Compression
	Multi-year History Extract
	Complete Proxy Data

	Any questions, please email contact@integrumesg.com

