
Integrum ESG API Guide V2.8 Dec 2024
Introduction
This document provides a developer with an overview of the concepts in Integrum ESG data, which should help with
understanding the descriptions of the APIs in the reference guides and examples.

It is a low-level API and is intended to serve as a general-purpose machine interface. Later in this document we will
describe tools for inspecting the data model and give examples for using the queries in some different technologies.

The companies and metrics web APIs are provided as a GraphQL endpoint. GraphQL is a powerful API query language
that allows users to select which data they want.

The API Document Collection
1. API Guide (this document): Describes the core features and main areas of the different Integrum ESG APIs and the

mechanisms for querying them.

2. Portfolio Management API Guide: Designed for the integration requirement of uploading portfolios to the Integrum
ESG system

3. API Reference Schema: Contains the full metadata/ data dictionary for each Integrum ESG API

4. GraphQL API Manual: This document directs the user to the GraphQL query builder and gives an example of building
a step-by-step complete extract for a single company. It also gives examples of building sentiment queries and bulk
extract.

5. ERD: An entity-relational diagram, for users who want to populate a data warehouse using our bulk API.

6. All metrics and available data: An Excel file containing every data point that can be pulled via the API.

Designing the integration
Some integration use cases might be for ad-hoc ESG data queries, either on a company or portfolio basis. For portfolio
cases, see the Portfolio Management API guide on uploading portfolios, or contact us for options on automatic extracts
from portfolio management systems.

Other, more analytic cases may call for the construction of a local database and a bulk extract to feed it. In that case,
using individual queries would be inefficient, so we recommend using a set of different API top levels.

In general, we prefer fewer, larger queries rather than a lot of small ones. Our system dynamically calculates scores and
there is a per query overhead.

The resulting large responses can also be compressed - and this is discussed in the bulk API examples, found in the
GraphQL API Examples document.

GraphQL not REST
For the metrics and sentiment data, we have multiple levels which might want to be queried in collections, as individual
endpoints would become cumbersome.

As different customers’ integration needs are different it makes more sense to use a query to specify the data required –
and a good standard for web API-based queries is GraphQL. https://GraphQL.org/

1

https://GraphQL.org/
https://GraphQL.org/

POST not GET
That means that a query is required to access the data and that query is provided to the API in a POST request, not a GET
request. You can still experiment with the API with standard tools like Postman – but you have to follow the GraphQL
standard.

GraphiQL not Swagger
Although you can use standard tools like Postman (and some curl examples are given in the examples document),
GraphQL is designed to serve its own metadata so we do not have static documentation to describe the schema.

Instead, it is easier to browse the metadata in an interactive tool like GraphiQL. How to use the GraphiQL tool is in this
document, and a full worked example is given in the GraphQL API Examples document.

A tabular version of the schema is still mildly useful for searching so it is included as an appendix to the API reference
– along with a script which can generate it from the live metadata.

Metric Structure
We strongly suggest reviewing the Integrum ESG public dashboard or Company Level Dashboard PDF to see how the
metrics and scores appear in practice before attempting to pull the data. This will help you better understand the names
and meanings of the data, as the dashboard provides a clearer representation of the information.

There are videos and PDFs on our website to explain the key functionality: https://www.integrumesg.com/tutorial-video-
hub

Materiality
Integrum ESG is a licensee of the SASB/IFRS materiality map. This proposes the most important sustainability issues for
each global sub-sector. Therefore, not all metrics will be relevant for each company. The sub-sector metric mappings are
given in detail in the API reference document.

This can be an issue when we want to calculate scores and metrics for some key measures like emissions. Despite the
interest in carbon emissions, it is not always material for the sustainability score.

So if we are looking for metric-level data for comparisons across diverse companies, it will be better to use the Impact
metrics (see below).

Impact Metrics are universal
The Impact metrics are measured across six themes which are highly representative of a company’s contribution to the
United Nations Sustainable Development Goals (SDG).

The Impact metrics are present for all companies and include important measures on ecosystems and resources. They are
slightly less obvious as they have abstract names from the SDGs.

The latest API introduces a metric description field which makes this easier to see.

Impact Metric Description

Wellbeing Tax contributed to all governments

Resource Security Waste generation

Decent Work Number of jobs created by the company

Climate Stability CO₂ (and other GHG) emissions

Healthy Ecosystems Water consumption

2

https://dashboard.integrumesg.com/dashboard/
https://s3.eu-west-2.amazonaws.com/integrumesg.com-policy-pdfs/Video+Information+Sheets/Video+info+sheet+-+Company+ESG+Dashboard.pdf
https://www.integrumesg.com/tutorial-video-hub
https://www.integrumesg.com/tutorial-video-hub

Values, Scores and Grades
Our scores are built up in a hierarchy in a very transparent and configurable way. You can read about our scoring
methodology here: Scoring Logic

Metric scores and grades
At the bottom level of the scoring, we have metrics.

A metric has two scores :

1. Awareness: The awareness score is an absolute score and is defined on a per-metric basis by our scoring logic.
Typically it will involve looking at the policies around the topic, disclosure of data, and setting meaningful targets.
The reason for scoring each metric is described in the dashboard and is available as the “awareness_comment” field
in the metric APIs (see the API reference document)

2. Performance: For a quantitative metric this is a relative score of quartiles 1-4 in the company’s global sub-sector
with zero for non-disclosure.

A quantitative metric will have a performance value which is the actual numeric value, it also has a standard unit that it
is conformed to. Where appropriate, there is also a scaled performance value which is the performance value per million
dollars of revenue which allows for comparison between companies of different sizes.

Awareness and performance scores are scored from 0-4 and are then directly converted to E-A grades.

Excerpts
A metric also has excerpts which are short pieces of text from the company disclosures which influenced our scoring.
You can pull the relevant excerpts from company disclosures that support every score at the sub-metric level.

We can also a derive a url to retrieve the screenshot of the page where we found the excerpt.The screenshots themselves
are not served through the api.

See the ‘Detailed metric example’ in the examples document for more information

Dimension scores
The low-level metrics are grouped into higher-level dimensions.

Some sustainability dimensions (e.g. Product Quality and Safety) and many Governance dimensions have multiple sub-
metrics.

The dimension score is the average of the metric scores.

Issue scores
The dimension scores are then aggregated into an issue score (an issue being the high-level topic such as Sustainability,
Impact and Governance). As a default, all metrics are equally weighted, as SASB has determined that the metrics mapped
against a sub-sector are all material - each dimension can be given a customised weight in the profile.

The Sustainability and Governance issues are then aggregated into the overall company score.

Grades
The dimension, issue and company levels A-E grades are determined by taking the score and its distance in standard
deviations (for that type of score) from 2.

Score lower Score upper Grade

> 2 + 1.5 sd Grade A

2 + 0.5 sd 2 + 1.5 sd Grade B

2 - 0.5 sd 2 + 0.5 sd Grade C

3

https://s3.eu-west-2.amazonaws.com/integrumesg.com-policy-pdfs/Video+Information+Sheets/Video+info+sheet+-+Understanding+the+scoring+logic.pdf

2 - 1.5 sd 2 - 0.5 sd Grade D

< 2 - 1.5 sd Grade E

This is why, on our scoring system, C is a fair grade rather than a bad one.

Connectivity and Authentication
The production endpoint is: https://dashboard.integrumesg.com/graphqlapi/v1/graphql

Authentication is by API key, being passed as ‘Api-Key XXX’ in the ‘Authorization’ HTTP header. (Note that ‘Api-Key’
is case sensitive)

The API key generation is self-service and it is obtained from the user options on the Integrum ESG dashboard. To find
the API key, please follow the steps below:
1. Log in to the Integrum ESG Dashboard: https://dashboard.integrumesg.com/dashboard/
2. Click your initials in the top right-hand corner
3. Click “Account”
4. Click “Generate API Key”

Requests are made in the usual GraphQL way of posting the query and receiving the results as a JSON payload

Rate Limiting
Given complex and nested queries can be expensive, we do apply rate limiting. The system estimates the complexity of
a query and applies a limit to the number that can be applied in a given period.

Initially, it applies back pressure by delaying responses. However, if you are making a lot of queries and the load continues,
then it refuses authorization and an “element not found” error can be returned.

Therefore, it can be better to design queries which return as much of what you want as possible, rather than making a
larger number of smaller queries.

It is also better not to try to make a lot of requests in parallel as it overcomes the effect of backpressure and increases the
chances of requests being rejected.

V1 and V2 Root Elements
The V1 API packages up the most important fields as displayed on the dashboard and makes them available program-
matically. It combines the current and previous year scores along with sentiment and SFDR compliance.

The V2 API is suitable for more complex and bulk API integration scenarios. It unbundles the separate data elements
allowing much more control - at the cost of requiring a deeper understanding of the structure and meaning of the data.

V1 API - Root Elements
The root elements:

company_api

country_api

are the simplest entry points for company and country scoring data, and they contain relationships to the individual sub-
metrics and the dimensions which group the sub-metrics (Those objects being dimension_api, company_dimension_api,
metric_api and country_metric_api)

There is also supporting metadata for sectors and the standard GraphQL aggregation objects for each of the main objects.

Queries on the company_api and country_api should be constrained to a profile_id as calculating the scores across all
of the profiles is very expensive, and will usually cause the query to time out.

The value −1 is a distinguished profile_id for the equal-weighted profile.

4

https://dashboard.integrumesg.com/graphqlapi/v1/graphql
https://dashboard.integrumesg.com/dashboard/

The company_api element is also nested under the portfolio_api element. See the examples document for an example
of retrieving all of the ESG scores for a portfolio.

V2 API - Root Elements
The main v2 root elements is: company_api_v2

There is also a company_scores_api_v2 but that is largely intended to be nested under the company_api_v2 where it
appears as company_sores.

Using GraphiQL to browse and generate queries
GraphiQL is an interactive tool for exploring the schema and generating queries.

This example shows using the free online version https://graphiql-online.com/graphiql, but apps and plugins for devel-
opment environments are available as well.

The screenshot shows the explorer view (left pane) selecting data from the company_api and generating and fetching
the data.

Similarly, for countries:

5

https://graphiql-online.com/graphiql

Tips on structuring GraphQL queries
In GraphQL, the structure of the query is designed as the shape of the json that you would like to see returned.

Each nested element may have its own where clauses, there are examples of that in the examples document where the
scores elements can be nested in portfolio elements.

Another example would be getting specific metrics instead of all of them.

A nested sub-element will relate to its parent. For example, the metric_scores element of the company_api will contain
the scores for that particular company. In that sense the nesting takes the place of joins in a relational data model.

There are sometimes multiple nestings as different queries with different roots can benefit from those relationships - so
there may be multiple different queries which could solve a problem in different structures.

Metric Flag
The metric_flag field has been introduced in the metric_api and metric_api_with_proxies to provide additional
contextual data for the Independent Directors % metric, the metric_flag field includes the chair’s name and their
independence status.

In this example:

query MyQuery () {
 metric_api(where: {metric_flag: {_is_null: false}, profile_id: {_eq: -1}}) {
 company_id
 metric_flag
 name
 }
 }
 }

The response structure will be:

 "metric_api": [
 {
 "company_id": 1,
 "metric_flag": {

6

 "chair": "Doe, John",
 "is_independent": "Yes/No"
 },
 "name": "Independent directors %"
 },

ISIN and ISINs
Investors often use an ISIN to identify the instruments that they have invested in and we map those ISINs onto the issuing
company. Note that the company for ESG monitoring purposes may not be the exact same legal entity as the issuer. For
example, bonds may be issued by a finance subsidiary but the ESG reporting is done at the group level.

Even for equity instruments, there may be multiple subsidiaries and multiple issues.

The single ISIN available in the company API is a ‘primary’ ISIN, usually the equity instrument issued in the country of
headquarters.

Using variables to query a list of ISINs
In this example:

query MyQuery ($isins : [String]) {
 company_api_v2(where:
 { isins: { code: { _in: $isins} } }) {
 isin
 name
 isins (where: {code: { _in : $isins} })
 { code }
 company_scores(where:
 { profile_id: { _eq: -1} }) {
 impact_score
 sustainability_score
 governance_score
 }
 }

 }

The returned isin is the primary isin from the company. The incoming isin in the query can be used both in the condition
in the where clause and the returned elements by use of a variable.

The isin is in the code field of the isins element.

7

Proxy coverage
Where we do not have coverage of a company from company reports, we can derive a “proxy” score using the average
results for the sector and geographic region. In the dashboard, we have the option to enable proxies for a specific portfolio,
and this selection is respected by the portfolio API without having to make any change.

It does this by using the company_api_with_proxies root element for scores which is also available directly. There is also
an equivalent company_api_v2_with_proxies for providing finer grain detail - and can be used to get proxy coveraage

Note that there are a lot of companies potentially returned from these elements as we create a proxy for every ISIN issuer
for which we know a sector. This is at least an order of magnitude more than covered companies.

These are scoring APIs and like all of the other scoring APIs must be called with a where clause of a profile_id as otherwise
it will try to compute scores for hundreds of profiles and time out.

Proxy performance values
The scaled_performance value is the average for the sector and region, and is used to provide a company-specific estimate
of the performance value if the proxy company’s revenue is known (i.e. we have been able to map a ticker onto a company
that we have financial data for). If we do not have the revenue data for the proxy company the sector/region average
performance value is returned - and is therefore not company specific. The returned metric data contains a scaled_flag
element which is set to false in this case.

Proxies for missing data
The metric_api_with_proxies will return a proxy value a metric in an FCM company where the data is not disclosed. This
is metric-level only - and does not contribute to the scoring system.

Proxies for ICM covered companies
We are unable to expose ICM companies data via the API for data licensing reasons, so for these companies we can
expose proxy metric-level data. The current implementation does not give company scores so these companies are
not available from the ‘V1’ api and is only available from the company_api_v2_with_proxies, where we can nest the
metric_api_with_proxies without having to compute a company level score.

Proxies without companies
For people wanting to use proxies for other purposes and doing the allocation to companies outside of a portfolio a new
root element proxy_cube_api is available.

This is a similar shape of API as the company_cube_api in that it has the same four scoring layers. It’s not a history API
so the record_date is actually the time now.

For an extract to your database outside integrum it’s probably simplest to do this in two steps using both apis. Get
all of the proxy company names, with country and sector using company_api_with_proxies and all of the scores with
proxy_cube_api.

Examples are in the examples document.

Metadata
All of the metadata is available for querying via the standard GraphQL __schema object (and indeed is used by tools like
GraphiQL as shown above to generate the explorer view – which is one of the easier ways of exploring the API and
constructing queries).

Bulk Extract Examples
For use cases where you want to load the ESG data into a system of your own, we provide some bulk mechanisms. Many
data providers find it more convenient to provide CSV content rather than provide a full set of content through the API.
But with the use of some specialist root elements, it is perfectly possible to do this directly in GraphQL.

Reporting Oriented Flat Structure
The company_cube_api provides a non-nested structure of the four layers of company score
• company level

8

• issue
• dimension
• metric

It is denormalized into a single record structure which means that some of the elements are optional if non-releveant at
that level.

It provides the same data as the dashboard scoring with the scores for the current year and the previous year.

History for the default equally weighted profile
The company_cube_history contains a daily dump of the company_cube_api for the default equally weighted profile. The
scores are quite slow-moving so we only keep the start of each month and the last 30 days.

Multiple years history - company_cube_history_all_years
The company_cube_history element above provides the denormalized view of the same scores that are in the dashboard.
In particular, we show the current year and previous year for each company as at the record date. If a company is due
to report but is slower than another company they may have different current years - but they’re still shown together as
that the best information we have for each.

For multiple years history this makes less sense. We don’t want this years reporting date to affect the score from several
years ago. It is better to have scores for companies aligned for the same financial year.

So that is the scoring basis for the company_cube_history_all_years which has the same denormalized structure - but
the peer groups are all at the same financial year - going back to 2019 if we had coverage of the company.

The coverage increased from around 2000 for financial year 2019 to over 3000 for financial year 2022.

It has a single set of entries for the financial year so it does not need a yeardiff element and is queried by financial_year
rather than record_date.

Using a query from a system
This section shows making GraphQL requests from different language clients.

The examples will either be standalone (for running in GraphiQL) or Python, but the core query should be able to be
used from any language capable of making and processing web requests.

Command line:
q1="
query MyQuery {
 company_api(where: {profile_id: {_eq: -1}}) {
 company_id
 country
 isin
 name
 sector_id
 }
}
"

eq=`echo "$q1" | tr '\n' ' '`

curl -H "Authorization:Api-Key XXXX" -H "Content-Type: application/json" -X POST -d "{\"query\":
\"$eq\"}" https://dashboard.integrumesg.com/graphqlapi/v1/graphql

Javascript:
/*

This is an example snippet - you should consider tailoring it

9

to your service.

*/

async function fetchGraphQL(operationsDoc, operationName, variables) {
 const result = await fetch("undefined", {
 method: "POST",
 headers: {'Authorization': 'Api-Key XXXX'},
 body: JSON.stringify({
 query: operationsDoc,
 variables: variables,
 operationName: operationName,
 }),
 });

 return await result.json();
}

const operationsDoc = `
 query MyQuery {
 company_api(where: { profile_id: { _eq: -1 } }) {
 name
 country
 summary {
 esg_score
 governance_score
 impact_score
 sustainability_score
 }
 }
 }
`;

function fetchMyQuery() {
 return fetchGraphQL(operationsDoc, "MyQuery", {});
}

async function startFetchMyQuery() {
 const { errors, data } = await fetchMyQuery();

 if (errors) {
 // handle those errors like a pro
 console.error(errors);
 }

 // do something great with this precious data
 console.log(data);
}

startFetchMyQuery();

Python:
import requests
import json
import pandas as pd

q2 = """
query MyQuery {
 company_api(where: { profile_id: { _eq: -1 } }) {
 company_id

10

 country
 current_year
 esg_score
 esg_score_diff
 governance_score
 governance_score_diff
 impact_score
 impact_score_diff
 isin
 name
 prev_esg_score
 prev_governance_score
 prev_impact_score
 prev_sentiment_score
 prev_sustainability_score
 previous_year
 profile_id
 sector_id
 sentiment_score
 sustainability_score
 sustainability_score_diff
 usd_revenue
 metric_scores {
 name
 performance_score
 }
 }
}
"""

url = 'https://dashboard.integrumesg.com/graphqlapi/v1/graphql'
r = requests.post(
 url, headers={'Authorization': 'Api-Key XXXX'}, json={'query': q2})
print(r.status_code)
json_data = json.loads(r.text)
print(json_data)
df = pd.json_normalize(json_data, record_path=['data', 'company_api'])
print(df)

Java
package com.integrumesg.app;

/**
 * Hello world!
 *
 */

import okhttp3.MediaType;
import okhttp3.OkHttpClient;
import okhttp3.Request;
import okhttp3.RequestBody;
import okhttp3.Response;

import com.google.gson.JsonObject;
import com.google.gson.JsonParser;

public class App
{

 public static JsonObject example()

11

 {
 String apiUrl = "https://dashboard.integrumesg.com/graphqlapi/v1/graphql";
 String apiToken = "XXX"; // Replace with your API token or credentials

 // Define the GraphQL query
 String GraphQLQuery = "{\"query\": \"query MyQuery { " +
 "company_api(where: {name: {_eq: \\\"Alphabet\\\"}, profile_id: {_eq: -1}}) { " +
 "esg_grade esg_score sustainability_grade sustainability_score " +
 "governance_grade governance_score impact_grade impact_score " +
 "name " +
 "metric_scores { description dimension_type name performance_value " +
 "performance_score performance_grade awareness_grade awareness_score unit } " +
 "pais { pai_name text score } " +
 "company_sfdr_article { article } " +
 "}}\" " +
 "}";

 System.out.println(GraphQLQuery);

 // Create an OkHttpClient
 OkHttpClient client = new OkHttpClient();

 // Create a request body with the GraphQL query
 RequestBody requestBody = RequestBody.create(MediaType.get("application/json"),
GraphQLQuery);

 // Create the HTTP request
 Request request = new Request.Builder().url(apiUrl)
 .post(requestBody)
 .header("Authorization", "Api-Key " + apiToken) // Set your authorization header here
 .build();

 try {
 // Send the request and get the response
 Response response = client.newCall(request)
 .execute();

 // Check if the request was successful
 if (response.isSuccessful()) {
 // Parse the response JSON
 String responseBody = response.body()
 .string();
 JsonObject jsonResponse = JsonParser.parseString(responseBody)
 .getAsJsonObject();

 // Handle the JSON response as needed
 return jsonResponse;
 } else {
 // Handle the error
 System.err.println("Request failed with code: " + response.code());
 System.err.println(response.body()
 .string());
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 return null;
 }
 public static void main(String[] args)
 {
 JsonObject resp = example();

12

 System.out.println(resp);
 }
}

Microsoft Powerquery formula language (M)
// This script shows how to use M language (Power Query Formula Language)
// to read data from Integrum ESG GraphQL API using a POST request.
// This can come in handy when building PowerBI reports that utilize GraphQL endpoints for loading
data.

let
 vUrl = "https://dashboard.integrumesg.com/graphqlapi/v1/graphql",
 vHeaders =[
 #"Method"="POST",
 #"Content-Type"="application/json",
 #"Authorization"="Api-Key XXX"
],
 // Notice the quote escaping here
 vContent=Text.ToBinary("{""query"": ""query MyQuery {
 company_api(where: {profile_id: {_eq: -1}}) {
 company_id
 country
 current_year
 esg_score
 esg_score_diff
 governance_score
 governance_score_diff
 impact_score
 impact_score_diff
 isin
 name
 prev_esg_score
 prev_governance_score
 prev_impact_score
 prev_sentiment_score
 prev_sustainability_score
 previous_year
 profile_id
 sector_id
 sentiment_score
 sustainability_score
 sustainability_score_diff
 usd_revenue
 }
}
 ""}"),
 Source = Web.Contents(vUrl, [Headers=vHeaders, Content=vContent]),
 #"JSON" = Json.Document(Source),
 data = JSON[data],
 company_api = data[company_api],
 #"Converted to Table" = Table.FromList(company_api, Splitter.SplitByNothing(), null, null,
ExtraValues.Error),
 #"Expanded Column1" = Table.ExpandRecordColumn(#"Converted to Table", "Column1", {"company_id",
"country", "current_year", "esg_score", "esg_score_diff", "governance_score",
"governance_score_diff", "impact_score", "impact_score_diff", "isin", "name", "prev_esg_score",
"prev_governance_score", "prev_impact_score", "prev_sentiment_score", "prev_sustainability_score",
"previous_year", "profile_id", "sector_id", "sentiment_score", "sustainability_score",
"sustainability_score_diff", "usd_revenue"}, {"Column1.company_id", "Column1.country",
"Column1.current_year", "Column1.esg_score", "Column1.esg_score_diff", "Column1.governance_score",
"Column1.governance_score_diff", "Column1.impact_score", "Column1.impact_score_diff", "Column1.isin",
"Column1.name", "Column1.prev_esg_score", "Column1.prev_governance_score",

13

"Column1.prev_impact_score", "Column1.prev_sentiment_score", "Column1.prev_sustainability_score",
"Column1.previous_year", "Column1.profile_id", "Column1.sector_id", "Column1.sentiment_score",
"Column1.sustainability_score", "Column1.sustainability_score_diff", "Column1.usd_revenue"})
in
 #"Expanded Column1"

Any questions, please email contact@integrumesg.com
14

	Introduction
	The API Document Collection
	Designing the integration
	GraphQL not REST
	POST not GET
	GraphiQL not Swagger

	Metric Structure
	Materiality
	Impact Metrics are universal

	Values, Scores and Grades
	Metric scores and grades
	Excerpts
	Dimension scores
	Issue scores
	Grades

	Connectivity and Authentication
	Rate Limiting
	V1 and V2 Root Elements
	V1 API - Root Elements
	V2 API - Root Elements

	Using GraphiQL to browse and generate queries
	Tips on structuring GraphQL queries
	Metric Flag
	ISIN and ISINs
	Using variables to query a list of ISINs

	Proxy coverage
	Proxy performance values
	Proxies for missing data
	Proxies for ICM covered companies
	Proxies without companies

	Metadata
	Bulk Extract Examples
	Reporting Oriented Flat Structure
	History for the default equally weighted profile
	Multiple years history - company_cube_history_all_years

	Using a query from a system
	Command line:
	Javascript:
	Python:
	Java
	Microsoft Powerquery formula language (M)

	Any questions, please email contact@integrumesg.com

