
Integrum ESG ERD
An Entity Relationship Diagram to show a visual representation of how com#
panies on the Integrum ESG Platform interact with business activities, metrics
and sub#metrics for a metrics database built from the bulk APIs.

Introduction
As described in the API guide, for use cases where it is more efficient for the client to extract all Integrum ESG data into
their own database, it is recommended to use bulk APIs like company_cube_history to retrieve everything at once.

The scores are structured in a “cube” format, with the level 1 data representing the sub-metrics and level 4 containing
company-level data.

In the example below, we fetch company_cube_history for “Full Coverage” companies, and supplement it with proxy
data calculated using sector and regional averages for the remaining companies.

After loading into the database (in this example SQLite), we ceate a view to provide scores for all companies.

To bring everything together, we retrieve all companies, metric names, and sector_metrics, which highlights the material
metrics for sustainability assessments.

fullbulkdownload.sh
key="XXX"
today=`date -I`
companiesq="
query MyQuery {
 company_api_v2_with_proxies {
 id
 country
 isin
 name
 sector_id
 sector {
 name
 }
 business_activities {
 business_activity {
 name
 }
 }
 usd_revenue
 proxy
 icm
 }
}
"
proxyq="
query proxyQuery {
 proxy_cube_api(where: {profile_id: {_eq: -1}, yeardiff: {_eq: 0}}) {
 awareness_grade
 awareness_score

1

 country
 level
 level1
 level2
 level3
 metric_unit
 performance_grade
 performance_score
 performance_value
 scaled_performance_value
 sd
 sector
 total_grade
 total_score
 weighted_dimension_score
 yeardiff
 }
}
"
fcmq="
query FcmCubeQuery {
 company_cube_history(
 where: {record_date: {_eq: \\\"$today\\\"}}
) {
 company_id
 awareness_grade
 awareness_score
 company_id
 country
 financial_year
 level
 level1
 level2
 level3
 metric_unit
 name
 parent_sector
 performance_grade
 performance_score
 performance_value
 profile_id
 record_date
 scaled_performance_value
 sd
 sector
 sector_id
 total_grade
 total_score
 universe_id
 yeardiff
 }
}
"
smq="
query SectorMetricsQuery {
 sector_metrics {
 metric_id
 sector_id
 }
}
"

2

metricsq="
query MetricsQuery {
 metrics {
 id
 display_name
 dimension {
 name
 type
 }
 }
}
"
eq=`echo "$companiesq" | tr '\n' ' '`
curl -H "Authorization:Api-Key $key" -H "Content-Type: application/json" -H "Accept-Encoding: gzip" -
X POST -d "{\"query\": \"$eq\"}" https://dashboard.integrumesg.com/graphqlapi/v1/graphql >
COMPANIES.gz
eq=`echo "$fcmq" | tr '\n' ' '`
curl -H "Authorization:Api-Key $key" -H "Content-Type: application/json" -H "Accept-Encoding: gzip" -
X POST -d "{\"query\": \"$eq\"}" https://dashboard.integrumesg.com/graphqlapi/v1/graphql > FCM.gz
eq=`echo "$proxyq" | tr '\n' ' '`
curl -H "Authorization:Api-Key $key" -H "Content-Type: application/json" -H "Accept-Encoding: gzip" -
X POST -d "{\"query\": \"$eq\"}" https://dashboard.integrumesg.com/graphqlapi/v1/graphql > PROXY.gz
eq=`echo "$smq" | tr '\n' ' '`
curl -H "Authorization:Api-Key $key" -H "Content-Type: application/json" -X POST -d "{\"query\":
\"$eq\"}" https://dashboard.integrumesg.com/graphqlapi/v1/graphql > SM.json
eq=`echo "$metricsq" | tr '\n' ' '`
curl -H "Authorization:Api-Key $key" -H "Content-Type: application/json" -X POST -d "{\"query\":
\"$eq\"}" https://dashboard.integrumesg.com/graphqlapi/v1/graphql > METRICS.json

api_to_db.sh
#
utility for converting a json array to a csv with the keys as columns
alias array_to_csv='jq -r '\''(map(keys) | add | unique) as $cols | map(. as $row | $cols |
map($row[.])) as $rows | $cols, $rows[] | @csv'\'''
flatten out the nested elements to make companies csv
if ["$1" != "-load"]; then
 gzip -d < COMPANIES.gz| jq '[.data.company_api_v2_with_proxies[]| .["sector_name"] = .sector.name
| del(.sector) | del(.business_activities)]' | array_to_csv > companies.csv
 # normalize the business_activities in a separate table
 gzip -d < COMPANIES.gz| jq '[.data.company_api_v2_with_proxies[]|.id as
$id| .business_activities[]| {company_id: $id, business_activity: .business_activity.name }] ' |
array_to_csv > business_activities.csv
 gzip -d < FCM.gz| jq .data.company_cube_history | array_to_csv > fcm.csv
 gzip -d < PROXY.gz| jq .data.proxy_cube_api | array_to_csv > proxy.csv
 jq .data.sector_metrics < sm.json| array_to_csv > sm.csv
 jq '[.data.metrics[]|{id: .id, level1: .display_name, level2: .dimension.name,
level3: .dimension.type}]' < METRICS.json | array_to_csv > metrics.csv
fi

sqlite3 myDatabase <<EOF
PRAGMA foreign_keys = ON;
create table metrics(id, level1 primary key, level2, level3);
.import --skip 1 metrics.csv metrics
create table companies (country, icm, id integer primary key, isin, name, proxy, sector_id,
sector_name, usd_revenue);
.mode csv
.import --skip 1 companies.csv companies
create table business_activities (business_activity, company_id integer
, foreign key(company_id) references companies(id)
);

3

.import --skip 1 business_activities.csv business_activities
create table fcm (awareness_grade, awareness_score, company_id, country, financial_year, level,
level1, level2, level3, metric_unit, name, parent_sector, performance_grade, performance_score,
performance_value, profile_id, record_date, scaled_performance_value, sd,sector, sector_id,
total_grade, total_score, universe_id, yeardiff
, foreign key(company_id) references companies(id)
, foreign key(level1) references metrics(level1)
);
.import --skip 1 fcm.csv fcm
create table proxy (awareness_grade, awareness_score, country, level, level1, level2, level3,
metric_unit, performance_grade, performance_score, performance_value, scaled_performance_value, sd,
sector, total_grade, total_score, weighted_dimension_score, yeardiff
, foreign key(level1) references metrics(level1)
);
.import --skip 1 proxy.csv proxy
create table sector_metrics(metric_id references metrics(id), sector_id
);
.import --skip 1 sm.csv sector_metrics
create view all_companies_cube as
select
 companies.country, id as company_id, isin, companies.name, proxy, companies.sector_id,
usd_revenue,
 awareness_grade, awareness_score, level, level1, level2, level3, metric_unit, performance_grade,
performance_score, performance_value, scaled_performance_value, sd, sector, total_grade, total_score
 from
 companies join proxy on companies.country = proxy.country and companies.sector_name = proxy.sector
where (companies.proxy = "true" or companies.icm = "true")
union all
select
 companies.country, id as company_id, isin, companies.name, proxy, companies.sector_id,
usd_revenue,
 awareness_grade, awareness_score, level, level1, level2, level3, metric_unit, performance_grade,
performance_score, performance_value, scaled_performance_value, sd, sector, total_grade, total_score
 from
 companies join fcm on companies.id = fcm.company_id where (companies.proxy = "false" and
companies.icm = "false");
EOF

4

ERD for the resulting database

5

	An Entity Relationship Diagram to show a visual representation of how companies on the Integrum ESG Platform interact with business activities, metrics and sub-metrics for a metrics database built from the bulk APIs.
	Introduction
	fullbulkdownload.sh
	api_to_db.sh
	ERD for the resulting database

