Developing brain function for age curves in Gambian and UK infants

S. Lloyd-Fox1,2, A. Blasi2, L. Mason2, D. Halliday1, K. Begus2, P. Vellekoop4, M. Papademetriou1, M. K. Darboe3, A. M. Prentice3,4, M. de Haan6, L. Kischkel6, T. Austin7, M. Rozhko6, S. E. Moore3,8, C. E. Elwell1

GCE Phase I Summary
99 infants were studied between birth and 24 months of age: fNIRS, Mullen Scales of Early Learning.

Project Description
- The ultimate aim of the Phase II project is to establish standard curves of brain function-for-age and to use these to identify early biomarkers of disrupted neurocognitive development.
- Our ambition is to redefine what can be investigated in the developing brain of infants at risk in low- and middle- income countries so that we can deliver and assess the efficacy of targeted interventional strategies.

GCE Phase II Project Outline: Longitudinal study from birth, 1, 5, 8, 12, 18 & 24 months of age
- Two sites: MRC field station, Keneba village, Gambia (N = 200)
 Rosie Hospital, Cambridge, UK (N = 50)

- New team of field workers and researchers
- Home visits
- Piloting in UK
- Questionnaire development
- EEG

- fNIRS paradigms: social (SOC), attention (ATT), working memory (WM) and functional connectivity (FC); EEG paradigm: auditory oddball (from the intergroup study); Eye-tracking paradigm (from the Life study); Cognitive Development Assessments: Neonatal Behavioural Assessment Scale (NBAS), Mullen Scales of Early Learning (MSEL), Parent-Child Interaction Measures, Child Development Inventory (CDI); Demographics, Socioeconomic status (SES), Maternal and Infant health and diet, HOME Inventory; Anthropometric/Biological measures: Mother (M), Infant (I)

More Information
- www.globalfNIRS.org
- Email: info@globalfNIRS.org
- Twitter: @globalfNIRS

Faltering head growth is apparent by 12 months of age in rural Gambian infants. Associated neurocognitive ramifications are poorly understood (Moore et al., unpublished).

Functional Near Infrared Spectroscopy
- fNIRS, an optical imaging technique, uses near infrared light to measure changes in brain blood flow and oxygen consumption (oxy- (HbO) and deoxy- (HHb) haemoglobin) associated with neuronal activation.
- fNIRS offers superior spatial resolution to EEG, and unlike fMRI, is well suited to field studies. It is completely safe, low cost and requires minimal set up and training.

Additional Information

1Department of Medical Physics and Bioengineering, University College London, UK; 2Centre for Brain and Cognitive Development, Birkbeck, University of London, UK; 3MRC International Nutrition Group, Kenema Field Station, The Gambia; 4MRC International Nutrition Group, London School of Hygiene and Tropical Medicine, UK; 5Institute of Child Health, UCL; 6Evelyn Perinatal Imaging Centre, Cambridge University Hospitals; 7MRC Human Nutrition Unit, Cambridge.