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ABSTRACT cuts and EM-like parameter estimation. GrabCut takes as in-
We propose a fully automated variation of the GrabCut techput a set of known background pixels specified, for example,
nique for segmenting comparatively simple images witkelitt Py users drawing a bounding rectangle around the object to be
variation in background colour and relatively high contras segmented. These pixels remain firmly assigned to the back-
between foreground and background. The interactive trimaground class during subsequent iterations. By contrast, we
generation central to the original formulation of GrabGut i assume that all pixel labels need to be estimated and that pix
replaced by a tentative approximation of the background usls may change their label in the course of the algorithm. The
ing active contours. Instead of waiting until convergente oinitial Gaussian models of the foreground and background
the iterated graph cut, we terminate as soon as the Gaugte constructed following an automated approximation ef th
sian models of foreground and background are (locally) maxforeground using active contours.
imally separated. We demonstrate that this results in eguiv. Graph cut techniques for segmentation abound. A sta-
lent segmentation quality at significantly lower cost. A com ple algorithm in the graph cut family is normalised clt [2]
parison with three alternative segmentation techniques, i which mitigates the tendency of other graph cut techniques
cluding normalised cut, indicates that the method is entipen towards unbalanced partitions. It requires few parameters

suitable for the chosen image domain. leads naturally to a bi-partitioning of the image and hasitbu
Index Terms— Segmentation, GrabCut, Graph Cut, Ac- widespread application in the region-wise segmentation of
tive Contours ’ ’ " complex images. In[]6] the authors consider the problem

of segmenting gray-scale images with multi-modal intgnsit
distributions on the assumption that the number of modes is
known. The distribution is modelled as a mixture of Gaussian

Automated object segmentation in unconstrained imagss IiedIStrIbUtlons the parameters of which are iteratively redin

well beyond the capability of current technology. Much within the standard GrabCut framework. The authorgn [7]

research is being invested therefore towards solving thredeetermlne a possibly large set of uniform regions (not nec-

slightly simpler problems: (i) to obtain a segmentatioroint gzsﬂgg tFi):r:tilgOont;?a({]izl.egz)rnet?\zharsesgul(r)nn 5?): ;];T'{]r:?u{;e?sg
regions, not necessarily objectsl([1]] [2]); (ii) to acheenb- 9 P b

ject segmentation by incorporating additional human inpuEhe tWO. regions belon_g to different segments. The set of seg-
(e.9. [3], 21, [B]); and (i) to obtain a segmentation in a mentations are combined and the resulting regions merged.

fully automated way on images satisfying certain constsain  1he main contributions of our work are (i) the combina-
Our work falls into the third class. Our goal is to Segmenttion of a modified version of GrabCut with automated initiali
foreground objects, that is various types of apparel often i Sation to achieve a fully unsupervised segmentation atyuori
cluding a human model, from unstructured but non-uniform@nd (i) the proposal of a new stopping criterion for GrabCut
backgrounds. We assume that an image (loosely) satisfiégat allows early termination whilst locally maximisingeth
the following constraints: (1) Images consist of possiblycontrast between foreground and background.

quite complicated foreground with high variation in thegdix The rest of the paper is organised as follows. Sedflon 2
colour values, and a simple background with little variafio  describes our technique for achieving an initial assigrtroén
pixel colour values; (2) The contrast between the foregdounpixels to foreground and background. In Secfibn 3 we present
and background is high. An example is shown in Figurehe technique for iteratively updating the labelling of fir-

. The proposed segmentation method is based on GrabGCeis. Sectiolll4 considers a border smoothing technique based
[4], which iteratively refines Gaussian mixture models @& th on morphological operators. Our experimental evaluatson i
background and foreground using a combination of grapipresented in Sectidd 5. Sectidn 6 concludes the paper.

1. INTRODUCTION



2. INITIALISATION OF BACKGROUND AND a |
FOREGROUND MODELS " >

To initialise the Gaussian models for foreground and back-

ground, we define initial sets of pixels for each class by let- ‘
ting an active contour converge towards a rough approxima-

tion of the object outline. We seleét equi-distant points ,
v = {v; € N2 : i = 1,...,k} along a rectangular con-

tour near the borders of the image. We use the active contour

model of Kast al. [8] in order to evolve the initial contour Fig. 1. Left: Original image; Right: converged state of active
towards the border of the object. [f [8] the aim is to minimisecontours

the following energy function

k pixel differs from those of its neighbours. Letdenote the
Eiotal(v) = Z(Emt(v’ 1) + Eegt (v, 1)), (1) set of pixel indices, and the set of index pairs of adjacent
i=1 vertices. The standard form of the cost function is then
whereE;,,;(v,i) andE.,.(v, ) are defined, respectively, as E(x,y) = Z By (25, ;) + Z Bozi, ;). (4)

. i€y i,j)EE
Eint(v,1) = & o = vica[l3 + B l[vies — 201 + visa |3, ) (e

(2)  Thedata termEs (z;,y;), in [4] is defined as the sum over all
and pixels of the pixel's component likelihood,

Eeut(v,i) = ~[|VI(03)|[3- @)

VI correspondsto the gradient maplofF;,,; is composed of Er(wi,yi) = —logp(yilwi, 0; ki) — log w(ki, ), (5)
the first order and second order term of the contauandfy oo () is the k;th Gaussian probability distribution esti-
are parameters that control the local geometry of the contou ated with parameter — {1, 5,1, In total. there are
As we have no prior information about the shape of the objec aussians iE the pro os;d %Lé’dezl}il;e {1 6 from
we set both parameters to unit¥.,, forces the active con- which k. 19 g 4p5 correspond .to cla,ss- T 1 and
tour to move towards regions with higher gradients. Whils i € {1,2,3,4,5} P v

other terms may of course be added to this energy term, V\/@ = G associates W.'th clasg = 0. 77('). Is the mixing co-
: . L efficient corresponding to each Gaussian component. Note
found the gradient to be sufficient for our application. In or

der to minimisek we use the dynamic programming op that, more conventionally, each pixel contributes withltige
total " likali ; ; _ i=5h =
timisation technique proposed by Amiai al. in [9]. An Illkem(u;or?o(t)fol;sthi'\g\:/’lIiﬁeéfr;(%ﬁzgtﬁ)z:}i’?le féﬁffé (r'g/voul q
example of the initial contour and the contour obtainedrafte;ﬁ;v ihe more accurate. but EE)Iso more éx ensive expeatatio
iteratively optimising the energy function &l (1) are shown ' P b

Figure[dl. Pixels outside the estimated contour are labaled maximisation algorithm to be applied in order to find the pa-
. . rameters of the GMM.

background and are used for computing the Gaussian paraq]h th terih (o 2. is defined as-

eters of the background models, o5 € R? (each compo- ¢ SMoothnesster b (2, 2;) is defined as:

nent of which corresponds to one of the RGB colour chan-

nels). From the pixels which lie inside the detected contour E2 (i, ;) = AL(w; # x;) exp(—7|yi — ;)

subset of pixels with values outsifles — 20, up + 205]

is selected to construct a Gaussian Mixture Model (GMM)-wherel(c) — 1 if condition ¢ is satisfied and) otherwise,

Following [4] we choose 5 components, and use EM for paz;st(-, -) is the Euclidean distance of the neighbouring pix-

1
dist(i.g)

rameter estimation. els, andy is the average variation in colour values in the two
pixels considered (where the average is taken over the three
3. ITERATED GRAPH CUT colour channels)\ is a parameter that specifies the relative

importance of the two terms making up the energy function.
Lety ={y; : 1 =1,2,..., N} denote the set of RGB colour Choosing it is an active research area in its own right; we
triples of each of theV pixels. We treat the segmentation use cross-validation for choosing a reasonable value\for
task as that of estimating a set of binary variables {z; € = The value ofE; is either zero (if the labels are the same)
{0,1} : ¢« = 1,2,..., N}, each indicating whether the cor- or a positive number that increases with the degree of simi-
responding pixel belongs to foreground or background. Idarity between the pixel values. To minimise the cost func-
conventional graph cut algorithms the optimal labellingimi tion of equation[(4) we follow the algorithm proposed|in [4].
imises an energy functiof'(x,y) which takes into account The proposed segmentation methodology is summarised in
the pixel data as well as the degree to which the label of théhe following:



Empora.compwwv. ermpor a. cori). A large proportion of

the images are shots of models wearing different products,
but also close-up views of items such as shoes and bags. The
backgrounds tend to include shadows and exhibit variation i
intensity. All 200 images were hand-segmented using a fine
polygon approximation of the contour. The segmentation ac-
curacy is measured in terms of ti&measure, which com-
bines the two complementary measures of precision (frac-
tion of hypothesised foreground thiat foreground) and re-
call (fraction of actual foreground found in the hypothesiis
foreground). The proposed unsupervised variant of GrabCut

Fig. 2. Left: Binary result of automated GrabCut; Right: Re- IS compared against three alternative segmentation mgthod

sult after subsequent morphological post-processing which will be described in turn. .
k-means segmentationWe apply thek-means clustering al-

o o gorithm withk = 2 and random initialisation to the array of
1. Initialise pixel labels as described in seclion 2 RGB triples (not taking into account coordinate informajio
2. Estimate the GMMs of the foreground and backgroundg optain a segmentation into foreground and background. Fo
pixels by first assigning to each pixel its most likely yauation purposes we choose as foreground the segmenttha
component and then computing parameters for eachyhibits greater overlap with the true foreground.
component using max-likelihood Maximum likelihood segmentation: To quantify the extent
3. Estimate new pixel labels (foreground and backgroundy, \yhich the most expensive part of the overall algorithm,
using the min cut/max flow algorithm namely iterated graphcut, contributes to segmentation-acc
4. If the stopping criterion is fulfilled, terminate, else go racy, we compared the algorithm against a restricted versio
tostep2 . in which pixels are assigned to one of the two GMMs as es-
We note two differences to the original GrabCut formula-timated from the converged state of the active contour. The
tion. Firstly, in our scheme all pixels may change their labe ivq| js assigned to the model which has the greater likeli-
whilst GrabCut assumes certain pixel labels (by defining g40q.

Trimap) to be immutable. Secondly, we introduce a new Stopgormajised cut: We use the publicly available ncut imple-
ping criterion. While GrabCut waits until convergence o th mentation\Wwi. ¢i S. Upenn. edu/ ~| Shi / Sof t war €).

Gibbs energy, we terminate when reaching a local maximumgain we choose as foreground the segment that exhibits
of the following symmetric contrast measure greater overlap with the true foreground.

ContrastP, Q) = Dkr(P,Q) + Dkr(Q,P), (7)

where D1 (P,Q) = YN, pilogpi/qi is the Kullback _
Leibler divergence, and® and Q are the normalised RGB Segmentation performance for the three methods are sum-

colour histograms of the foreground and background pixels.Marised in Tabl&ll. The max KL and min Gibbs correspond
to the maximum contrast and converged solution in the orig-

inal GrabCut, respectively. We summarise the results im fou

5.2. Results

4. CONTOUR POST PROCESSING

observations.

Discrete graph cuts lead to sharp edges between foreground F-measure Precision Recall
and background. To soften the appearance we apply stam-means 78.0- 16.4 94.6+ 9.5 89.2+19.8
dard techniques from mathematical morphology. The objedt'CUtl,k ihood 33;-8; 411463 gg-gi 2035 gg-gi ‘1122-0

. . . . . . ax likellnoo . . . . . .
region is flrs_t opem_ed _(d|lat|01_"| + erqsmn) and subsequentl{ﬂax KL 94.04 59 90.54 6.1 98.31 6.8
closed (erosion + dilation) using a diamond-shaped smoothyin Gibbs 94.1+ 5.9 90.8+ 6.2 98.2+ 6.8
ing element (to avoid Manhattan artifacts). The result is a
smoothening of the contour as well as a reduction in the in- Table 1. Results in percentage
tensity gradient across the edge. The effectis visiblegufg
2. Firstly, the maximum likelihood method achieves remariabl

good performance. Yet, the small differencefinmeasure
between it and the graph-based methods is visually signifi-
cant in many cases, as illustrated in Figre 3. Fameasure
clearly is too coarse (and global) a performance measure to
The image collection consists of 200 images of apparel thaccurately reflect human perception of differences in segme
are obtained from Pixsta Ltd’s online fashion marketplacdation quality.

5. EVALUATION

5.1. Experimental setup


http://www.empora.com
http://www.cis.upenn.edu/~jshi/software/

Contrast Measure
P
@

T T T T T
13.21-
13151
13.1]
Proposed stopping criterion
13.05(-
. L . .
4

6 8 10 12
Iteration

2.7+ Grab Cut stopping criterion |

Gibbs Energy

0 ‘Z 4‘1 E‘S E‘i 10 12
Iteration

Fig. 3. Visual inspection reveals marked differences between

methods of similar performance under themeasure

Secondly, not only does the iterated graphcut perform igni
cantly better thak-means and n-cut, performance also varies
much less.

Thirdly, the point at which the contrast is maximised coin-
cides with a performance maximum although the effect ap-
pears very weak.

Lastly, we note that the contrast criterion allows us to ierm
nate the algorithm 60% earlier than if we waited until conver Fig. 4. Above: Changes of contrast and Gibbs energy during
gence. This criterion reduced the computational time of th&rabCut; Below: Images that maximise contrast (left) and
original GrabCut optimisation by6% with an average ofs  minimise Gibbs (right).

perimage (on a standard Pentium IV machine (3.2 GHz using

C++ and the OpenCV library). Note that the stopping crite- o )
rion requires the computation of the KL-divergence measur&3] A Criminisi, T Sharp, and A Blake, “GeoS: Geodesic
which adds an extra computational burden. Fidilre 4 shows Mmage segmentation,” iRroc European Conf Computer

for one particular image how the Gibbs energy and the con-  Vision, 2008.

trast measure change during GrabCut. The image results bﬁq C Rother, V Kolmogorov, and A Blake, “GrabCut: inter-
low illustrate how the traditional criterion may sometingss active foreground extraction using iterated graph cuts;”

clude protruding parts of the foreground object. ACM Trans SgGraph, vol. 23, no. 3, pp. 309-314, 2004.

M Unger, T Pock, and B Horst, “Interactive globally op-
timal image segmentation,” iAroc British Conf Machine

We presented an automated version of GrabCut for the pur- Vision, 2008.

pose of reliably segmenting foreground objects against refg] A Ali and A Farag, “A novel framework for n-d mul-

atively simple backgrounds. We also introduced a new stop- - timodal image segmentation using graph cuts,”Pinc

ping criterion for GrabCut that allows significantly earlier- Int’| Conf Image Processing, 2008, pp. 729-732.

mination without sacrificing segmentation quality. Withe84

accuracy under th&-measure, the results are very promising[7] F Estrada and A Jepson, “Quantitative evaluation of

and well above those of normalised cut @ntheans. a novel image segmentation algorithm,” froc Int’l
Conf Computer Vision and Pattern Recognition, 2005, pp.
1132-1139.
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