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ABSTRACT
We propose a fully automated variation of the GrabCut tech-
nique for segmenting comparatively simple images with little
variation in background colour and relatively high contrast
between foreground and background. The interactive trimap
generation central to the original formulation of GrabCut is
replaced by a tentative approximation of the background us-
ing active contours. Instead of waiting until convergence of
the iterated graph cut, we terminate as soon as the Gaus-
sian models of foreground and background are (locally) max-
imally separated. We demonstrate that this results in equiva-
lent segmentation quality at significantly lower cost. A com-
parison with three alternative segmentation techniques, in-
cluding normalised cut, indicates that the method is eminently
suitable for the chosen image domain.

Index Terms— Segmentation, GrabCut, Graph Cut, Ac-
tive Contours

1. INTRODUCTION

Automated object segmentation in unconstrained images lies
well beyond the capability of current technology. Much
research is being invested therefore towards solving three
slightly simpler problems: (i) to obtain a segmentation into
regions, not necessarily objects ([1], [2]); (ii) to achieve ob-
ject segmentation by incorporating additional human input
(e.g. [3], [4], [5]); and (iii) to obtain a segmentation in a
fully automated way on images satisfying certain constraints.
Our work falls into the third class. Our goal is to segment
foreground objects, that is various types of apparel often in-
cluding a human model, from unstructured but non-uniform
backgrounds. We assume that an image (loosely) satisfies
the following constraints: (1) Images consist of possibly
quite complicated foreground with high variation in the pixel
colour values, and a simple background with little variation in
pixel colour values; (2) The contrast between the foreground
and background is high. An example is shown in Figure
1. The proposed segmentation method is based on GrabCut
[4], which iteratively refines Gaussian mixture models of the
background and foreground using a combination of graph

cuts and EM-like parameter estimation. GrabCut takes as in-
put a set of known background pixels specified, for example,
by users drawing a bounding rectangle around the object to be
segmented. These pixels remain firmly assigned to the back-
ground class during subsequent iterations. By contrast, we
assume that all pixel labels need to be estimated and that pix-
els may change their label in the course of the algorithm. The
initial Gaussian models of the foreground and background
are constructed following an automated approximation of the
foreground using active contours.

Graph cut techniques for segmentation abound. A sta-
ple algorithm in the graph cut family is normalised cut [2]
which mitigates the tendency of other graph cut techniques
towards unbalanced partitions. It requires few parameters,
leads naturally to a bi-partitioning of the image and has found
widespread application in the region-wise segmentation of
complex images. In [6] the authors consider the problem
of segmenting gray-scale images with multi-modal intensity
distributions on the assumption that the number of modes is
known. The distribution is modelled as a mixture of Gaussian
distributions the parameters of which are iteratively refined
within the standard GrabCut framework. The authors in [7]
determine a possibly large set of uniform regions (not nec-
essarily a partitioning). For each region pair a minimum cut
segmentation is obtained on the assumption that the pixels of
the two regions belong to different segments. The set of seg-
mentations are combined and the resulting regions merged.

The main contributions of our work are (i) the combina-
tion of a modified version of GrabCut with automated initiali-
sation to achieve a fully unsupervised segmentation algorithm
and (ii) the proposal of a new stopping criterion for GrabCut
that allows early termination whilst locally maximising the
contrast between foreground and background.

The rest of the paper is organised as follows. Section 2
describes our technique for achieving an initial assignment of
pixels to foreground and background. In Section 3 we present
the technique for iteratively updating the labelling of thepix-
els. Section 4 considers a border smoothing technique based
on morphological operators. Our experimental evaluation is
presented in Section 5. Section 6 concludes the paper.



2. INITIALISATION OF BACKGROUND AND
FOREGROUND MODELS

To initialise the Gaussian models for foreground and back-
ground, we define initial sets of pixels for each class by let-
ting an active contour converge towards a rough approxima-
tion of the object outline. We selectk equi-distant points
v = {vi ∈ N

2 : i = 1, . . . , k} along a rectangular con-
tour near the borders of the image. We use the active contour
model of Kasset al. [8] in order to evolve the initial contour
towards the border of the object. In [8] the aim is to minimise
the following energy function

Etotal(v) =

k∑

i=1

(Eint(v, i) + Eext(v, i)), (1)

whereEint(v, i) andEext(v, i) are defined, respectively, as

Eint(v, i) = α ‖vi − vi−1‖
2
2 + β ‖vi+1 − 2vi + vi−1‖

2
2 ,
(2)

and
Eext(v, i) = −||∇I(vi)||

2
2. (3)

∇I corresponds to the gradient map ofI. Eint is composed of
the first order and second order term of the contour.α andβ
are parameters that control the local geometry of the contour.
As we have no prior information about the shape of the object,
we set both parameters to unity.Eext forces the active con-
tour to move towards regions with higher gradients. Whilst
other terms may of course be added to this energy term, we
found the gradient to be sufficient for our application. In or-
der to minimiseEtotal we use the dynamic programming op-
timisation technique proposed by Aminiet al. in [9]. An
example of the initial contour and the contour obtained after
iteratively optimising the energy function of (1) are shownin
Figure 1. Pixels outside the estimated contour are labelledas
background and are used for computing the Gaussian param-
eters of the background model,µB, σB ∈ R

3 (each compo-
nent of which corresponds to one of the RGB colour chan-
nels). From the pixels which lie inside the detected contoura
subset of pixels with values outside[µB − 2σB, µB + 2σB]
is selected to construct a Gaussian Mixture Model (GMM).
Following [4] we choose 5 components, and use EM for pa-
rameter estimation.

3. ITERATED GRAPH CUT

Let y = {yi : i = 1, 2, . . . , N} denote the set of RGB colour
triples of each of theN pixels. We treat the segmentation
task as that of estimating a set of binary variablesx = {xi ∈
{0, 1} : i = 1, 2, . . . , N}, each indicating whether the cor-
responding pixel belongs to foreground or background. In
conventional graph cut algorithms the optimal labelling min-
imises an energy functionE(x, y) which takes into account
the pixel data as well as the degree to which the label of the

Fig. 1. Left: Original image; Right: converged state of active
contours

pixel differs from those of its neighbours. LetV denote the
set of pixel indices, andE the set of index pairs of adjacent
vertices. The standard form of the cost function is then

E(x, y) =
∑

i∈V

E1(xi, yi) +
∑

(i,j)∈E

E2(xi, xj). (4)

The data term,E1(xi, yi), in [4] is defined as the sum over all
pixels of the pixel’s component likelihood,

E1(xi, yi) = − log p(yi|xi, θ; ki) − log π(ki, xi), (5)

wherep(.) is thekith Gaussian probability distribution esti-
mated with parametersθi = {µi, Σi}. In total, there are6
Gaussians in the proposed model i.e.ki ∈ {1, · · · , 6} from
which ki ∈ {1, 2, 3, 4, 5} correspond to classxi = 1 and
ki = 6 associates with classxi = 0. π(.) is the mixing co-
efficient corresponding to each Gaussian component. Note
that, more conventionally, each pixel contributes with thelog
likelihood of its GMM, i.e.E1 (xi, yi) =

∑i=5
i=1 − log p(.) −

log π(.) not of the GMM component (5). The former would
allow the more accurate, but also more expensive expectation-
maximisation algorithm to be applied in order to find the pa-
rameters of the GMM.
The smoothness termE2(xi, xj) is defined as:

E2(xi, xj) = λ1(xi 6= xj) exp(−γ|yi − yj|)
1

dist(i, j)
, (6)

where1(c) = 1 if condition c is satisfied and0 otherwise,
dist(·, ·) is the Euclidean distance of the neighbouring pix-
els, andγ is the average variation in colour values in the two
pixels considered (where the average is taken over the three
colour channels).λ is a parameter that specifies the relative
importance of the two terms making up the energy function.
Choosing it is an active research area in its own right; we
use cross-validation for choosing a reasonable value forλ.
The value ofE2 is either zero (if the labels are the same)
or a positive number that increases with the degree of simi-
larity between the pixel values. To minimise the cost func-
tion of equation (4) we follow the algorithm proposed in [4].
The proposed segmentation methodology is summarised in
the following:



Fig. 2. Left: Binary result of automated GrabCut; Right: Re-
sult after subsequent morphological post-processing

1. Initialise pixel labels as described in section 2
2. Estimate the GMMs of the foreground and background

pixels by first assigning to each pixel its most likely
component and then computing parameters for each
component using max-likelihood

3. Estimate new pixel labels (foreground and background)
using the min cut/max flow algorithm

4. If the stopping criterion is fulfilled, terminate, else go
to step 2

We note two differences to the original GrabCut formula-
tion. Firstly, in our scheme all pixels may change their labels,
whilst GrabCut assumes certain pixel labels (by defining a
Trimap) to be immutable. Secondly, we introduce a new stop-
ping criterion. While GrabCut waits until convergence of the
Gibbs energy, we terminate when reaching a local maximum
of the following symmetric contrast measure

Contrast(P, Q) = DKL(P, Q) + DKL(Q, P ), (7)

where DKL(P, Q) =
∑N

i=1 pi log pi/qi is the Kullback
Leibler divergence, andP and Q are the normalised RGB
colour histograms of the foreground and background pixels.

4. CONTOUR POST PROCESSING

Discrete graph cuts lead to sharp edges between foreground
and background. To soften the appearance we apply stan-
dard techniques from mathematical morphology. The object
region is first opened (dilation + erosion) and subsequently
closed (erosion + dilation) using a diamond-shaped smooth-
ing element (to avoid Manhattan artifacts). The result is a
smoothening of the contour as well as a reduction in the in-
tensity gradient across the edge. The effect is visible in Figure
2.

5. EVALUATION

5.1. Experimental setup

The image collection consists of 200 images of apparel that
are obtained from Pixsta Ltd’s online fashion marketplace

Empora.com (www.empora.com). A large proportion of
the images are shots of models wearing different products,
but also close-up views of items such as shoes and bags. The
backgrounds tend to include shadows and exhibit variation in
intensity. All 200 images were hand-segmented using a fine
polygon approximation of the contour. The segmentation ac-
curacy is measured in terms of theF -measure, which com-
bines the two complementary measures of precision (frac-
tion of hypothesised foreground thatis foreground) and re-
call (fraction of actual foreground found in the hypothesised
foreground). The proposed unsupervised variant of GrabCut
is compared against three alternative segmentation methods,
which will be described in turn.
k-means segmentation:We apply thek-means clustering al-
gorithm withk = 2 and random initialisation to the array of
RGB triples (not taking into account coordinate information)
to obtain a segmentation into foreground and background. For
evaluation purposes we choose as foreground the segment that
exhibits greater overlap with the true foreground.
Maximum likelihood segmentation: To quantify the extent
to which the most expensive part of the overall algorithm,
namely iterated graphcut, contributes to segmentation accu-
racy, we compared the algorithm against a restricted version
in which pixels are assigned to one of the two GMMs as es-
timated from the converged state of the active contour. The
pixel is assigned to the model which has the greater likeli-
hood.
Normalised cut: We use the publicly available ncut imple-
mentation (www.cis.upenn.edu/∼jshi/software).
Again we choose as foreground the segment that exhibits
greater overlap with the true foreground.

5.2. Results

Segmentation performance for the three methods are sum-
marised in Table 1. The max KL and min Gibbs correspond
to the maximum contrast and converged solution in the orig-
inal GrabCut, respectively. We summarise the results in four
observations.

F-measure Precision Recall
k-means 78.0± 16.4 94.6± 9.5 89.2± 19.8
n-cut 63.8± 14.3 53.0± 20.5 68.8± 12.0
max likelihood 93.2± 4.6 88.5± 6.8 98.8± 4.2
max KL 94.0± 5.9 90.5± 6.1 98.3± 6.8
min Gibbs 94.1± 5.9 90.8± 6.2 98.2± 6.8

Table 1. Results in percentage

Firstly, the maximum likelihood method achieves remarkably
good performance. Yet, the small difference inF -measure
between it and the graph-based methods is visually signifi-
cant in many cases, as illustrated in Figure 3. TheF -measure
clearly is too coarse (and global) a performance measure to
accurately reflect human perception of differences in segmen-
tation quality.

http://www.empora.com
http://www.cis.upenn.edu/~jshi/software/


Fig. 3. Visual inspection reveals marked differences between
methods of similar performance under theF -measure

Secondly, not only does the iterated graphcut perform signifi-
cantly better thank-means and n-cut, performance also varies
much less.
Thirdly, the point at which the contrast is maximised coin-
cides with a performance maximum although the effect ap-
pears very weak.
Lastly, we note that the contrast criterion allows us to termi-
nate the algorithm 60% earlier than if we waited until conver-
gence. This criterion reduced the computational time of the
original GrabCut optimisation by16% with an average of5s
per image (on a standard Pentium IV machine (3.2 GHz using
C++ and the OpenCV library). Note that the stopping crite-
rion requires the computation of the KL-divergence measure
which adds an extra computational burden. Figure 4 shows
for one particular image how the Gibbs energy and the con-
trast measure change during GrabCut. The image results be-
low illustrate how the traditional criterion may sometimesex-
clude protruding parts of the foreground object.

6. CONCLUSIONS

We presented an automated version of GrabCut for the pur-
pose of reliably segmenting foreground objects against rel-
atively simple backgrounds. We also introduced a new stop-
ping criterion for GrabCut that allows significantly earlier ter-
mination without sacrificing segmentation quality. With 94%
accuracy under theF -measure, the results are very promising
and well above those of normalised cut andk-means.
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