
ABSTRACT 

 

Human-computer interaction is increasingly recognised to be an indispensable component of image 

retrieval systems. A typical form of interaction is that of relevance feedback whereby users supply 

relevance information on the retrieved images. This information can subsequently be used to 

optimise retrieval parameters. The first part of the chapter provides a comprehensive review of 

existing relevance feedback techniques and also discusses a number of limitations that can be 

addressed more successfully in a browsing framework. Browsing models therefore form the focus 

of the second part of this chapter where we will evaluate the merit of hierarchies and networks for 

interactive image search. This exposition aims to provide enough detail to enable the practitioner to 

implement most of the techniques and to find ample pointers to the relevant literature otherwise.  
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INTRODUCTION 

Similarity in appearance is often revealing about other, and potentially much deeper, functional and 

causal commonalities between objects, events and situations. Things that are similar in some respect 

are likely to behave in a similar way and owe their existence to similar causes. It is because of this 

regularity that similarity is fundamental to many cognitive tasks such as concept learning, object 

recognition and inductive inference.  

 

Similarity-based reasoning requires efficient modes of retrieval. It is perhaps only in experimental 

settings that subjects have direct sensory access to the patterns that they are asked to compare. In 

most situations an observed pattern is evaluated by comparing it with patterns stored in memory. 

The efficiency with which we can classify and recognise objects suggests that the retrieval process 

is itself based on similarity. According to Steven Wolfram (2004) the use of memory “underlies 

almost every major aspect of human thinking. Capabilities such as generalization, analogy and 

intuition immediately seem very closely related to the ability to retrieve data from memory on the 

basis of similarity.” He extends the ambit of similarity-based retrieval to the domain of logical 

reasoning, which ultimately involves little more than “retrieving patterns of logical argument that 

we have learned from experience” (p. 627).  

 

The notion of similarity is clearly not without problems. Objects may be similar on account of 

factors that are merely accidentals and that, in fact, shed no light on the relationship that one could 

potentially unveil. The problem of measuring similarity largely reduces, therefore, to one of 

defining the set of features that matter. The problem of estimating the relative significance of 

different features is one of information retrieval in general. It is however greatly compounded in the 

case of image retrieval in two significant ways: First, documents readily suggest a representation in 

terms of its constituent words. Images do not suggest such a natural decomposition into semantic 

atoms with the effect that image representations are to some extent arbitrary. Secondly, images 

typically admit to a multitude of different meanings. Each semantic facet has its own set of 

supporting visual features and a user may be interested in any one of them.  

 

These challenges have traditionally been studied in the context of QBE. In this setting the primary 

role of users is to formulate a query, the actual search is taken care of by the computer. This 



division of roles has its justification in the observation that the search is the computationally most 

intensive part in the process, but is questionable on the grounds that the task of recognising 

relevance is still best solved by the human user. The introduction of relevance feedback into QBE 

systems turns the problem of parameter learning into a supervised learning problem.  Feedback on 

retrieved images can help to find relevant features or better query representations. Although the 

incorporation of relevance feedback techniques can result in substantial performance gains, it does 

not overcome the more fundamental limitations of the QBE framework in which they have been 

formulated. Often users may not have an information need in the first place and wish to explore an 

image collection. Moreover, the presence of an information need does not mean that a query image 

is readily at hand to describe it. Also brute force nearest neighbour search is linear in the collection 

size and the sub-linear performance achieved through hierarchical indexing schemes does not 

extend to high dimensional features spaces with more than 10 dimensions. 

 

Browsing provides an interesting alternative to QBE but has, by comparison, received surprisingly 

scant attention. Browsing models for image search tend to cast the collection into some structure 

that can be navigated interactively. Arguably one of the greatest difficulties of the browsing 

approach is to identify structures that are conducive to effective search in the sense that they support 

fast navigation, provide a meaningful neighbourhood for choosing a browsing path and allow users 

to position themselves in an area of interest. 

 

The first part of this chapter will examine relevance feedback models in the QBE setting. After a 

brief interlude in which we discuss limitations of the QBE framework, we shift the focus to 

browsing models that promise to address at least some of these. Each section concludes with a 

summary table that juxtaposes many of the works that have been discussed.  

 

  

 

 

 

 

 



QUERY BY EXAMPLE SEARCH 

 

Query by example systems return a ranked list of images based on similarity to a query image. 

Relevance feedback in this setting involves users labelling retrieved images depending on their 

perceived degree of relevance. Relevance feedback techniques vary along several dimensions which 

makes any linear exposition somewhat arbitrary. We structure the survey according to how 

relevance feedback is used to update system parameters: Query adaptation utilises relevance 

information to compute a new query for the next round of retrieval. Metric optimisation involves an 

update of the distance function that is used to compute the visual similarities between the query and 

database images. Classification involves finding a decision function that optimally separates 

relevant from non-relevant images. 

 

Query adaptation 

Query adaptation describes the process whereby the representation of an initial query is modified 

automatically based on relevance feedback. Query adaptation was among the first relevance 

feedback techniques developed for text retrieval (Salton & McGill, 1982) and has since been 

adapted to image retrieval (Rui, Huang & Mehrotra, 1997; Ishikawa, Subramanya & Faloutsos, 

1998; Porkaew, Chakrabarti & Mehrotra, 1999; Zhang & Su, 2001; Aggarwal, Ashwin and Ghosal, 

2002; Urban, Jose & Rijsbergen, 2003; Kim & Chung, 2003). The two most important types of 

query adaptation are query point moving and query expansion. We will be dealing with each in turn. 

 

Query point moving 

Query point moving is a simple concept and illustrated in Figure 1. Relevant (+) and non-relevant 

(o) objects are displayed in a two-dimensional feature space with the query initially being in the 

bottom right quadrant (left plot). The images marked by the user correspond to the bold circles. The 

goal of query point moving is to move the query point towards the relevant images and away from 

the non-relevant images. Clearly, if relevant images form clusters in feature space, this technique 

should improve retrieval performance in the next step (right plot). Techniques differ in how exactly 

this movement in feature space is achieved.  

 



 

Figure 1 Moving the query point towards positive examples. 

 

In  Urban et al.(2003), for example, images are represented in terms of a set of keywords and a 

colour histogram. Given a set of images for which the user has indicated some degree of relevance, 

the visual part of the query is computed as the weighted average over the relevant images. 

Meanwhile, Rui et al. (1997) the representation of the query is altered using both relevant and non-

relevant images. The method employs Rocchio's formula (1971) originally developed for text 

retrieval. In particular, given sets R and N of feature vectors of relevant and non-relevant images, 

respectively, the learned query vector is computed as 
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where α, β and γ are parameters to be chosen. For α = γ = 0, the new query representation is the 

centroid of the relevant images. The goal of the method is to move the query point closer towards 

relevant images and further away from non-relevant images.  

 

Yet another approach is taken by Ishikawa et al. (1998) and Rui and Huang (2000) who find the 

best query point as that point that minimises the summed distances to all relevant images. The 

optimal query representation turns out to be the weighted average of the representations of all 

relevant images.  

 

 

 



Query expansion 

Query point moving suffers from a notable limitation: If relevant images form visually distinct 

subsets (corresponding to multiple clusters in feature space), the technique may easily fail to move 

the query into a better position as relevant images suggest multiple and mutually conflicting 

directions. The problem arises from the requirement to cover multiple clusters with only one query. 

A simple modification of the above approach that alleviate this problem involves replacing the 

original query point by multiple query points each located near different subsets of the relevant 

images. This modification turns query point moving into what may more aptly be described as 

query expansion (Porkaew et al, 1999; Kim & Chung, 2003; Urban & Jose, 2004a. Again, 

differences between techniques are down to details, in particular to the question of how to choose 

the precise locations of the query points.   

 

In Porkaew et al (1999), for example, relevant images are clustered and the cluster centroids chosen 

as new query points. The overall distance of an image to the multi-point query is computed as the 

weighted average over the distances to each query point, i.e.  ∑
∈

=
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The weights are taken to be proportional to the number of relevant images in each cluster. Thus, 

query points that seem to represent the user need better have a greater weight in the overall distance 

computation. One should note, however, that this scheme retains the feature it seeks to overcome by 

linearly averaging over individual distances. In fact, it can be shown that the overall result is 

equivalent to query point moving where the new query point is given by ∑
∈Qq

qqw . If d is taken to be 

the Euclidean distance, for example, then the iso-distance lines for a multi-point query remain 

circles now centred at the new query point.   

 

 

Figure 2 Multi-point queries: From query point moving towards disjunctive queries. 



  

This is shown on the left plot in Figure 2. The method reduces therefore to the solution suggested 

by Ishikawa et al (1998) and Rui and Huang (2000). To properly account for the cluster structure it 

seems more reasonable to treat the multi-point query as a disjunctive query, an approach taken in 

more recent work by Wu, Faloutsos, Sycara and Payne (2000), Kim and Chung (2003) and Urban 

and Jose (2004a). In the second work, for example, the others suggest a remedy in the form of  ∑
∈

=
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where q is the representation of a cluster and α is a parameter that confers the desired non-

convexity. The iso-distance lines of the model with α ranging from 1 to 1/4 are shown in Figure 2. 

For α = 1, the model reduces to that of Porkaew et al. (1999). 

 

The above methods have in common that they are concerned with combining distance scores. An 

alternative approach to multi-point queries is taken by Urban and Jose (2004) who adapt a rank-

based aggregation method, median-rank aggregation (Fagin, Kumar & Sivakumar,  2003), to multi-

point image queries and establish superior performance over the simple score-based method of 

Porkaew et al (1999). The rank of an image p is the number of images whose distance scores are 

smaller or equal to that of p. This particular method involves computing the image ranks with 

respect to each of the different query points. The median of those ranks becomes the final rank 

assigned to that image. If an image has a large distance to only a small number of query points, 

these will have no effect on the final rank of that image. This provides support for more disjunctive 

queries, but the method is equally robust against unusually small distances.  

 

 

Distance metric optimisation 

 

Introduction 

The second large group of relevance feedback techniques is concerned with modifying the distance 

metric that is used to compute the visual similarities between the query and the database images. As 

noted earlier, one of the problems pertaining to the notion of similarity relates to the question of 

how to weigh different features. A feature that is good at capturing the fractal characteristics of 

natural scenes may not be good for distinguishing between yellow and pink roses. How can we infer 



from relevance feedback which feature is important and which one isn't? 

 

A naive method of computing the distance between two representations is to concatenate all 

individual feature vectors into one and measure the distance between two vectors x and y. In 

hierarchical models, distances are computed between individual features and the resulting distances 

are aggregated. In both models, we have to compute the distance between two vectors. In image 

retrieval, commonly used distance metrics are instances of the general Minkowski metric,  
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This reduces to the Euclidean metric for α = 2 and to the L1 metric for α = 1. The advantage of the 

Minkowski metric is that it can readily be parameterised by adding a weight to each component-

wise difference. For α = 2, we obtain a weighted Euclidean distance 
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where one typically constrains the weights to sum to one and to be non-negative. Relevance 

feedback can now help to adjust these weights so that relevant images tend to be ranked higher in 

subsequent rounds. The idea is illustrated in Figure 3. Under the weighted Euclidean metric with 

equal weights the iso-distance lines in a two-dimensional vector space are circles centred at the 

query vector. In this example, the one image marked relevant is much closer to the query with 

respect to the second feature. On the assumption that a relevant image has more relevant images in 

its proximity, we wish to discount distances along the dimension along which the relevant image 

differs most from the query. Here this is achieved by decreasing the weight for feature 1 with the 

effect that the iso-distance lines become ellipsoids with their long axes parallel to that of the least 

important feature.  

 



 

Figure 3: Changing parameters of the metric. 

 

In hierarchical models these distances need to be combined. By far the most popular aggregation 

method is the weighted linear sum that we encountered earlier in the context of multi-point queries, ∑
=

=
k
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where we now sum over k features rather than over query points. The great majority of relevance 

feedback methods are concerned with adjusting weights of each individual feature component either 

in a flat (Ishikawa et al., 1998, Peng, Bhanu and Qing, 1999) or in a hierarchical feature model 

(Sclaroff, Taycher & La Cascia, 1997; Rui, Huang, Ortega & Mehrotra, 1998; Schettini, Ciocca & 

Gagliardi, 1999; Rui & Huang, 2000; Heesch and Rueger, 2003; Urban & Jose, 2004b). We shall 

refer to the two types of weights as component weights and feature weights, respectively. 

 

Early models 

In the hierarchical model proposed by Rui et al. (1998) the weight of a component is taken to be 

inversely proportional to the standard deviation of that component among relevant images. This 

heuristic is based on the intuition that a feature component that shows great variation among the 

relevant images does not help to discriminate between relevant and non-relevant images. Although 

any function that monotonically decreases with the variance would appear to be a good candidate, it 

turns out that dividing by the standard deviation agrees with the optimal solution that was later 

derived in the optimisation framework of Ishikawa et al. (1998). The feature weights are adjusted 

by taking into account both negative and positive examples using a simple heuristics. Although 

experiments suggest a substantial improvement in retrieval performance on a database containing 

more than 70,000 images the figures should be treated with great caution as the number of images 



on which relevance feedback is given lies in the somewhat unrealistic range of 850 to 1100.  

 

Optimising generalised Euclidean distances 

An elegant generalisation of the relevance feedback method of Rui et al. (1998) was developed by 

Ishikawa et al. (1998). It is motivated by the observation that relevant images may not necessarily 

align with one of the feature dimensions and so the weighted Euclidean distance used in Rui et al. 

(1998) cannot fully account for their distribution (its iso-distance lines form ellipsoids whose 

diameters are parallel to the coordinate axes). This limitation can be addressed by considering a 

generalisation of the Euclidean distance, introduced by Chandra Mahalanobis under the name D-

statistic in the study of biometrical data and now simply known as the Mahalanobis distance. It is 

more conveniently written in matrix notation as 
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where M is any square matrix. If M is a diagonal matrix, then the expression reduces to Equation 

(1.1) with the weights corresponding to the diagonal elements. If M is a full matrix, then the 

expression contains products between the differences of any two components. In two dimensions 
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and similarly for higher dimensions. The iso-distance lines of the general Mahalanobis metric are 

ellipsoids that need not align with the coordinate axes. The components of M are found by 

minimising the sum of the distances between the images marked relevant and the query. The 

interesting twist of the model is that the query itself is re-estimated at each step. The optimisation 

thus determines not only M but also the query with respect to which the distances are minimised. 

The method integrates the two techniques of query point moving and metric update in one 

optimisation framework. The objective function is 
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where N is the number of relevant images, and vi a relevance score given by the user. Note that xi 



here denotes the vector of the ith image, not the ith component of some vector x. Under the 

additional constraints that det(M) = 1 and that M is symmetric the solutions for q and M are  ∑∑
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where C is the covariance matrix of the positive examples. In order for the inverse of C to exist, 

relevance feedback needs to be given on at least as many images as there are feature components. If 

this is not the case, a pseudo-inverse can be used instead.  

 

Based on our preceding discussion, some of the limitations of the approach taken by Ishikawa et al. 

(1998) should be evident: First, the approach tackles the problem of query point moving but does 

not support multi-point queries; secondly, it exploits only positive feedback which might be rather 

scarce at the beginning of the search; thirdly, it assumes a flat image representation model with all 

features for one image concatenated into one single vector. This inflates the number of parameters 

to be learned with the effect of rendering parameter estimation less robust. 

 

To address the last shortcoming, Rui and Huang (2000) extend the optimisation framework of 

Ishikawa et al. (1998)  by adding feature weights. For each feature, distances are computed using 

the generalised Euclidean metric and the overall similarity is obtained according to Equation (1.2). 

Like in Ishikawa et al. (1998) the aim is to minimise the summed distances between relevant images 

and the query. The objective function takes the form of Equation (1.3) except for an additional inner 

sum,   
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where, as before, v are relevance scores, w are feature weights and xij is the jth feature vector of the 

ith relevant image. The optimal solutions for q and M are the same as in Ishikawa et al. (1998) 

while the feature weights are given by  
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where the squared denominator is the sum of the weighted distances between the query and all 



relevant images under feature j. 

 

Optimisation with negative feedback 

The above methods only make use of positively labelled examples despite the fact that negative 

feedback has repeatedly been shown to prevent the retrieval results from converging too quickly 

towards local optima (Mueller, Mueller, Squire, Marchand-Maillet & Pun, 2000; Vasconcelos & 

Lippman, 2000; Heesch and Rueger, 2002; Mueller, Marchand-Maillet & Pun, 2002).  An 

innovative method that takes explicit account of negative examples is by Aggarwal et al. (2002). 

They adopt the general framework of Ishikawa et al. (1998) by minising Equation (1.3) but the extra 

constraint is added that there are no non-relevant images within some small neighborhood of q. This 

is achieved by automatically modifying the relevance scores v. In particular, given some solution q 

and M of Equation (1.3) with an initially uniform set of relevance scores, the relevance score of the 

relevant image that is farthest from the current query point q is set to zero and the scores of any 

other positive image set to the sum of its quadratic distances from the negative examples. 

Minimising the objective function again with the thus altered scores yields a new solution q and M, 

which is more likely to contain only relevant images. This scheme is iterated until the neighborhood 

contains only relevant images.  

 

Another example of metric optimisation involving negative feedback is by Lim, Wu, Singh and 

Narasimhalu (2001). Here, users are asked to re-rank retrieved images and the system subsequently 

minimises the sum of the differences between the user-given ranks and the computed ranks. 

Because of the integral nature of ranks, the error function is not analytic and numerical optimisation 

is required to find the feature weights. 

 

A method that admits to an analytic solution is proposed in Heesch and Rueger (2003). Relevance 

feedback is given by positioning retrieved images closer to or further away from the query that is 

originally situated at the centre (Figure 4 left and middle). The user provides a real-valued vector of 

new distances, and the objective function is the sum of the squared errors between the distances 

computed by the system and the new distances supplied by the user. The distance function that 

minimises the objective function is used for the next retrieval step (Figure 4 right).  

 



 

                    

 

Figure 4: In search for blue doors. Left: initial display with default distance metric; Middle: display 

after user feedback; Right: display when retrieving with newly learned distance metric. 

 

Multi-dimensional scaling 

The methods discussed thus far retrieve a ranked list of images, often organised on a two-

dimensional grid or as in Heesch and Rueger (2003) in the form of a spiral around the query. 

Crucially, however, the mutual distances within the set of retrieved images are not taken into 

account for the display, i.e. returned images that are visually similar may not necessarily be 

displayed close to each other. Rubner, Guibas and Tomasi (1997) apply multi-dimensional scaling 

(Kruskal, 1964) to the search results to achieve a more structured view. Given a set of objects and 

their mutual distances, we can place each object in a high-dimensional metric space such that the 

distances are exactly preserved. For practical purposes, the preferred dimensionality of the space is 

two for which distances can only be approximated. The result is an approximate two-dimensional 

embedding that preserves as far as possible the distances between objects. The technique can be 

applied both to the set of retrieved images but can also be used as a means to display the entirety of 

small collections in a perceptually meaningful way. Navigation through the collection can be 

achieved by letting the user select one of the retrieved images as the new query.  

 

Another attempt of a synthesis between automated search and browsing is described in Santini and 

Jain (2000) and Santini, Gupta and Jain (2001). Similar to Rubner et al. (1997), the proposed system 

seeks a distance-preserving projection of the images onto two dimensions. As well as selecting an 

image from the display as the new query, users move images to new positions. In Santini et al. 

(2000), the system finds feature and component weights that minimise the mismatch between the 

relations imposed by the user and the computed distances. The system thus uses information about 



the desired relative distances between images.  

 

Similarity on manifolds 

Up to now, we have only considered global metrics. Distances for all images are computed using 

the same, possibly parameterised distance metric. On the assumption that relevant images fall on 

some manifold in the Euclidean feature space, a better approach would be to find the best local 

metric. He, Ma and Zhang (2004) propose to approximate the metric structure of the manifold at the 

location of the query. The approximation makes use of positive examples, which are assumed to be 

close to the query under the geodesic distance. The algorithm proceeds by computing the k-nearest 

neighbours of each of the positive examples. The union of these sets constitutes the set of 

candidates from which we shall eventually retrieve. The geodesic distance is approximated by the 

topological distance on a graph whose vertices correspond to elements of the ‘candidate’ set along 

with the query and the positive examples. Edges are constructed between any two images if their 

unweighted Euclidean distance does not exceed some threshold. The geodesic distance is then 

approximated by the topological distance on the graph, that is, the length of the shortest path 

between two images. Retrieval on the manifold returns the set of images with the smallest 

topological distance to the query.  

 

 

Similarity search as classification 

A third class of techniques treats the problem of similarity search as one of classification. The 

techniques are similar to the class of metric optimisation discussed in the preceding section and 

some can be interpreted as estimating parameters of some similarity function.  

 

Probabilistic approaches 

Methods that approach the classification problem from a Bayesian perspective explicitly model 

probability densities. The aim of these methods is to assign class probabilities to an image based on 

the class-specific feature densities estimated from relevance feedback. Let p be an image, x its 

feature representation and R and N be the sets of relevant and non-relevant images. By Bayes' rule 

we have 
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In Nastar, Mitschke and Meilhac (1998) the feature density of relevant images P(x|p є R) is 

assumed to be Gaussian, and features are assumed to be independent so that P(p є R|x) is a product 

of Gaussians,  

).|()|(
1

RpxPxRpP i

k

i

∈∝∈ ∏
=

 

If we were only to consider relevant examples, the mean and standard deviation can readily be 

found using the principle of maximum likelihood. Nastar et al. (1998) suggest an iterative technique 

that takes into account negative examples. It does this by determining the proportion of negative 

examples falling into a 3σ confidence interval around the current mean and the proportion of 

positive examples falling outside of it. The error is simply the sum of the two terms. To better 

account for multi-modality a mixture of Gaussians can be used, an extension that has the slight 

disadvantage of requiring numerical optimisation for parameter estimation (Vasconcelos & 

Lippman, 2000; Yoon & Jayant, 2001). 

Meilhac and Nastar (1999) drop the assumption of Gaussianity of feature densities and use a Parzen 

window for non-parametric density estimation. Feature densities are estimated for both relevant and 

non-relevant images and the decision rule is  
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for each feature. Assuming independence of features we obtain 
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The additiveness of this density estimation method makes it incremental, i.e., at every round a fixed 

number of terms is added to the decision function making the algorithm cost-effective. 

The Bayesian framework developed by Cox, Miller, Omohundro and Yianilos (1998) and Cox, 

Miller, Minka, Papathomas and Yianilos (2000)  for target search is based on an explicit model of 

what users would do given the target image they want. The system then uses Bayes' rule to predict 

the target given their action.  

 



Discriminant classifiers 

An alternative approach to classification that does not require an explicit modelling of feature 

densities involves finding a discriminant function that maps features to class labels using some 

labelled training data. 

An increasingly popular classifier is the support vector machine or SVM (Vapnik, 1995). SVMs 

typically map the data to a higher-dimensional feature space using a possibly non-linear transform 

associated to a reproducing kernel. Linear discrimination between classes is then attempted in this 

feature space. SVMs have a number of advantages over other classifiers that make them particularly 

suitable for relevance feedback methods (Hong, Tian & Huang, 2000;  Chen, Zhou & Huang, 2001; 

Tong & Chang, 2001; Jing, Li, Zhang, Zhang & Zhang, 2003; He, Li, Zhang, Tong & Zhang, 2004; 

Crucianu, Ferecatu & Boujema, 2004). Most notably, SVM avoid too restrictive distributional 

assumptions regarding the data and are flexible as prior knowledge about the problem can be taken 

into account by guiding the choice of the kernel. 

In the context of image retrieval the training data consists of the relevant and non-relevant images 

marked by the user. Learning classifiers reliably on such small samples is a particular challenge. 

One potential remedy is that of active learning (Cohn, 1994). The central idea of active learning is 

that some training examples are more useful for training the classifier than others. It is guided by 

the more specific intuition that points close to the hyperplane, that is, in regions of greater 

uncertainty regarding class membership, are most informative and should be presented to the user 

for labelling instead of a random subset of unlabelled points. Applications of active learning to 

image retrieval are found in Tong and Chang (2001) and  He et al. (2004). In the former work a 

support vector machine is trained over successive rounds of relevance feedback. In each round the 

system displays the images closest to the current hyperplane. Once the classifier has converged, the 

system returns the top k relevant images farthest from the final hyperplane. Although the method 

involves the user in several rounds of potentially ungratifying feedback, the performance of the 

trained classifier improves over that of alternative techniques such as query point moving and query 

expansion.  

A summary of much of the above can be found in the table below. For each system, we note the 

kind of information communicated through feedback, the part of the system that is modified in 

response. 

 



Author Type of 

Feedback 

Range Objective 

Rui-97 +/- Binary Query point moving 

Rui-98 + Real Query point moving 

Rui-98 + Discrete Metric optimisation 

Rui-00 + Real Query point moving 

Porkaew-99 + Binary Query expansion 

Ishikawa-98 + Real Query point moving 

Nastar-98 +/- Binary Distribution of relevant 

Meilhac-99 +/- Binary Distribution of relevant 

Lim-01 +/- Discrete Metric optimisation 

Ishikawa-98 + Real Metric optimisation 

Heesch-03 +/- Real Metric optimisation 

Urban-03 + Binary Query point moving 

Urban-04 +  Binary Query expansion 

Kim-03  + Binary Query expansion 

Tong-01 +/- Discrete Discrimant classifier 

He-04 + Binary Metric optimisation 

Aggarwal-02 +/- Real Metric optimisation 

Table 1: Overview of relevance feedback systems developed in a QBE setting 

INTERLUDE 

Let us now take a step back and assess the merit of the general methodology described above.  The 

reported performance gains through relevance feedback are often considerable even though any 

performance claims must be judged carefully against the experimental particulars, especially the 

database size, the performance measures, and the type of queries. Below we suggest two major 

problems with the relevance feedback methodology.  

 

Parameter initialisation 

The utilisation of relevance feedback for query expansion and multi-modal density estimation has 

attracted much attention and appears justified on the ground that the feature distributions of most 

relevance classes tend to be multi-modal and form natural groups in feature space. But unless the 



query itself consists of multiple images representing these different groups, we should not 

reasonably expect images from different groups to be retrieved in response of the query. If 

anything, the retrieved images will contain images from the cluster to which the query image is 

closest under the current metric. 

 

But not only do relevance classes often form visually distinct clusters, images often belong to a 

number of relevance classes. This is an expression of the semantic ambiguity which pertains in 

particular to images and which relevance feedback seeks to resolve. With queries consisting of 

single images, the question to resolve is which natural group the query image belongs to, not so 

much which the different natural groups belonging to the relevance class of the query. But while 

some systems cater for multi-modality, none explicitly deal with polysemy. By initialising 

parameter values, systems effectively impose a particular semantic interpretation of the query.  

 

The problem of parameter initialisation has so far received insufficient attention. One notable 

exception is the work by Aggarwal et al. (2002) which we had mentioned earlier in a different 

context. The system segments the query image, modifies each segment in various ways and displays 

a set of modified queries to the users who mark segments that continue to be relevant. The feature 

weights are then computed similar to Rui et al. (1997) by considering the variance among the 

relevant segments.  

 

Another method of parameter initialisation that is very similar in spirit to that of Aggarwal (2002) is 

developed in Heesch (2005). The method seeks to expose the different semantic facets of the query 

image by finding all images that are most similar to it under Equation (1.2) for some weight set w. 

As we vary w, different images will become the nearest neighbour of the query. For each such 

nearest neighbour we record its associated w, which we may regard as a representation of one of the 

semantic facets users may be interested in. Users select a subset of these nearest neighbours and 

thereby implicitly select a set of weights. These weights are then used to carry out a standard 

similarity search. The method outperforms relevance feedback methods that retrieve with an 

initially uniform weight set w but is not inexpensive computationally. NNk Networks which we 

shall discuss in the next section provide another attempt to tackle the initialisation problem. 

 



Exploratory search 

With very few exceptions, the methods described above rely on the assumption that users know 

what they are looking for. The methods are designed to home in on a set of relevant items within a 

few iterations and do not support efficient exploration of the image collection. We shall see in the 

second half of this chapter that more flexible interaction models may address this issue more 

successfully.  

 

SEARCH THROUGH BROWSING 

Browsing offer an alternative to the conventional method of query by example but have received 

surprisingly little attention. Some of the advantages of browsing are as follows: 

  

• Image browsing requires but a mental representation of the query. Although automated image 

annotation (Lavrenko, Manmatha & Jeon, 2003; Feng, Manmatha & Lavrenko, 2004; Zhang, 

Zhang, Li, Ma & Zhang, 2005; Yavlinsky, Schofield and Rueger, 2005) offers the possibility to 

reduce visual search methodologically to traditional text retrieval, there may often be 

something about an image which cannot be expressed in words leaving visually guided 

browsing a viable alternative. 

• Retrieval by example image presupposes that users already have an information need. If this is 

not the case, enabling users to navigate quickly between different regions of the image space 

becomes of much greater importance. 

• For large collections, time complexity becomes an issue. Even when hierarchical indexing 

structures are used, performance of nearest neighbour searches has been shown to degrade 

rapidly in high-dimensional feature spaces. For particular relevance feedback techniques, 

approximate methods may be developed that exploit correlations between successive nearest 

neighbour searches (Wu & Manjunath, 2001), but there does not exist a universal cure. 

Meanwhile, browsing structures can be precomputed allowing interaction to be very fast. 

• The ability of the human visual system to recognise patterns reliably and quickly is a marvel 

yet to be fully comprehended. Endowing systems with similar capabilities has proven an 

exceedingly difficult task. Given our limitations in understanding and emulating human 

cognition, the most promising way to leverage the potential of computers is to combine their 

strengths with those of users and achieve a synergy through interaction. During browsing users 



are continuously asked to make decisions based on the relevance of items to their current 

information need. A substantial amount of time is spent, therefore, by engaging users in what 

they are best at, while exploiting computational resources to render interaction fast.  

 

Hierarchies 

Hierarchies have a ubiquitous presence in our daily life: examples include the organisation of files 

on a computer, the arrangement of books in a physical library, the presentation of information on 

the web, employment structures, postal addresses and many more. 

 

To be at all useful for browsing, hierarchical structures need to be sufficiently intuitive and allow 

users to predict in which part of the tree the desired images may reside. When objects are described 

in terms of only a few semantically rich features, building such hierarchies is relatively easy. The 

low-level, multi-featural representation of images renders the task substantially more difficult. 

 

 

Agglomerative Clustering 

The most common methods for building hierarchies is by way of clustering either by iteratively 

merging clusters (agglomerative clustering) or by recursively partitioning clusters (divisive 

clustering), see Duda (2001) for an overview. 

 

Early applications of agglomerative clustering to image browsing are described in Yeung and Liu 

(1995), Yeung and Yeo (1997), Zhang and Zhong (1995) and Krishnamachari and Abdel-Mottaleb 

(1999}. The first two papers are concerned with video browsing and clustering involves automated 

detection of topics and for each topic the constituent stories. Stories are represented as video 

posters, a set of images from the sequences that associate with repeated or long shots and act as 

pictorial summaries. In Zhang and Zhong (1995) and Yang (2004} the self-organising map 

algorithm (Kohonen, 1995) is applied to map images on a two-dimensional grid. The resulting grid 

is subsequently clustered hierarchically. One of the major drawbacks of the self-organising map 

algorithm (and neural network architectures in general) is its computational complexity. Training 

instances often need to be presented multiple times and convergence has to be slow in order to 

achieve good performance, in particular so for dense features  



 

Chen, Bouman and Dalton (1998; 2000) propose the concept of a similarity pyramid to represent 

image collections. Each level is organised such that similar images are in close proximity on a two-

dimensional grid. Images are first organised into a binary tree through agglomerative clustering 

based on pairwise similarities. The binary tree is subsequently transformed into a quadtree which 

provides users a choice of four instead of two different child nodes. The arrangement of cluster 

representatives is chosen such that some measure of overall visual coherence is maximised. Since 

the structure is precomputed, the computational cost incurred at browsing time is slight. 

 

Divisive clustering 

Agglomerative clustering is quadratic in the number of images. Although this can be alleviated by 

sparsifying the distance matrix, this method becomes inaccurate for dense feature representations 

and is more amenable to key-word based document representations. 

 

A computationally more attractive alternative is divisive clustering whereby clusters are recursively 

split into smaller clusters. One popular clustering algorithm for this purpose is k-means. In 

Pecenovic, Do, Vetterli and Pu (2000) it is applied to 6,000 images with cluster centroids being 

displayed according to their position on a global Sammon map. However, compared to 

agglomerative clustering, the divisive approach has been found to generate less intuitive groupings 

(Yeung & Yeo, 1997; Chen et al., 2000) and the former has remained the method of choice in spite 

of its computational complexity. 

 

 

Networks 

Nearest neighbour networks 

A significant work on interlinked information structures dates back to the mid-1980s (Croft & 

Parenty, 1985).  It proposes to structure a collection of documents as a network of documents and 

terms with accordingly three types of weighted edges. The authors suggest to keep only links 

between a document and the document most similar to it, and similarly for terms. Term-term and 

document-document links thus connect nearest neighbours and each document gives rise to what a 

star cluster comprising the document itself and all adjacent nodes. Although the structure is 



intended for automated search, the authors are aware that "as well as the probabilistic and cluster-

based searches, the network organisation could allow the user to follow any links in the network 

while searching for relevant documents. A special retrieval strategy, called browsing, could be 

based on this ability.'' (p. 380). However, the number of document-document edges does not exceed 

by much the number of documents, and star clusters are disconnected rendering browsing along 

document-document nodes alone impractical. 

 

Importantly, the work has inspired subsequent work by Cox (1992; 1995). Cox motivates 

associative structures for browsing by observing that "people remember objects by associating them 

with many other objects and events. A browsing system on a static database structure requires a rich 

vocabulary of interaction and associations.'' His idea is to establish a nearest neighbour network for 

each of a set of the different object descriptors. Being aware that different features may be 

important to different users, Cox realises the importance of interconnecting nearest neighbour 

networks to allow multi-modal browsing. 

Unfortunately, Cox's work has not become as widely known as perhaps it should have. What may 

partly account for this is that content based image retrieval was then in its very early beginning and 

the first research programme that grew out of the initial phase of exploration happened to be that of 

query by example pushing browsing somewhat to the periphery. 

 

NNk Networks 

The problem with many of the above structures is that the metric underlying their construction is 

fixed.  The advantage of fast navigation therefore comes at a prize: users are no longer in a position 

to alter the criterion under which similarity is judged. The structures thus deride the principal tenet 

that motivates relevance feedback techniques. Zhou and Huang (2001) arrive at a similar conclusion 

when they observe that ‘the rationale of relevance feedback contradicts that of pre-clustering.’ 

 

A browsing structure that has been designed with this in mind are NNk Networks (Heesch, 2005; 

Heesch, Pickering, Yavlinsky & Rueger (2004); Heesch & Rueger, 2004; 2005). The structure is a 

directed graph where an arc is established from p to q if q is the nearest neighbour of p under at 

least one combination of features (represented in terms of index i in Equation (1.2)). Instead of 

imposing a particular instance of the similarity metric, NNk Networks expose the different semantic 



facets of an image by gathering all top-ranked images under different metrics.  During browsing 

users select those neighbours in the graph that match their target best. NNk Networks exhibit small-

world properties (Watts & Strogatz, 2000) that  make them particularly well suited for interactive 

search. Relevant images tend to form connected subgraphs so that a user who has found one 

relevant image is likely to find many more by following “relevance trails” through the network. The 

screenshots below illustrate the diversity among the set of neighbours for three different positions in 

a network of 32,000 Corel images. The size of the image is a measure of the number of different 

metrics under which that image is more similar to the currently selected image than any other. 

              

Figure 5: The set of NNk in a network of 32,000 Corel images for three different positions. 

 

Pathfinder networks 

For browsing at least parts of the network need to be visualised. The large number of links in a 

network may prevent users from recognising structural patterns that could aid navigation. A 

practical strategy is to reduce the number of links. The pathfinder algorithm is one example of a 

link-reduction algorithm (Dearhold & Schvaneveldt, 1990). It is not concerned with constructing 

the original network but converting a network of any kind to a sparser network. The pathfinder 

algorithm removes an edge between vertices if there exists another path of shorter length. An 

application of pathfinder networks to the problem of organising image collections is found in Chen, 

Gagaudakis and Rosin (2000) but the scope for interaction is limited. Indeed, it seems that the 

principal application domain of pathfinder networks has so far been visual data mining, not 



interactive browsing. The reason is quite likely to be found in the computational complexity that is 

prohibitive for collection sizes of practical significance. Moreover, visualisation and navigation 

places somewhat different structural demands on the networks. While visualisation requires the 

extraction of only the most salient structure, retaining some degree of redundancy renders the 

networks more robust for navigation purposes. 

 

 

 

Dynamic trees: ostensive browsing 

The ostensive model of Campbell (2000) is iterated query by example in disguise but the query only 

emerges through the interaction of the user with the collection. The impression for the user is that of 

navigating along a dynamically unfolding tree structure. While originally developed for textual 

retrieval of annotated images, the ostensive model is equally applicable to visual features (Urban et 

al., 2003). It consists of two components: the core component is the relevance feedback model, the 

other is the display model.  

 

Relevance feedback takes the form of selecting an image from those displayed. A new query is 

formed as the weighted sum of the features of this and previously selected images. In Urban et al. 

(2003) images are described by colour histogram. Given a sequence of selected images, the colour 

representation of the new query is given as the weighted sum of individual histograms with weights 

taking the form of wi = 2-i (i = 0 indexing the most recent image). 

The display model is that of an unfolding tree structure: images closest under the current query are 

displayed in a fan-like pattern to one side of the currently selected image. Users can select an image 

from the retrieved set, which is placed in the centre, and a new set of images are retrieved in 

response. Since previous images are kept on the display the visual impression of the user is that of 

establishing a browsing path through the collection. In Urban et al. (2003) the browsing path is 

displayed in a fisheye view (see Figure 6). 

 

 



 

Figure 6: The interface of the ostensive browser by Urban et al. (2003) 

 

The ostensive model attempts to track changing information needs by continuously updating the 

query. Which set of images are retrieved depends on which path the user has travelled to arrive at 

the current point. Because the number of such different paths grows quickly with the size of the 

image collection, it is impractical to compute a global structure beforehand. Nonetheless, for the 

user the impression is one of navigating in a relatively unconstrained manner through the image 

space. Unlike many other relevance feedback systems, users do not have to rank or label images, or 

change their relative location. The interaction is thus light and effective. Again, a summary of the 

models is given below (Table 2).  

 

 

 

 

 



Author Structure RF Flexible 

Metric 

Offline Online # images 

Cox-95  Networks No Yes O(n2) O(1) < 100 

Heesch-04  Networks No Yes O(n2) O(1) 32,000 

Chen-00 Networks No No O(n4) O(1) 279 

Urban-03  Dynamic Trees Yes Yes O(1) O(n) 800 

Zhang-95  Hierarchies No No O(n2) O(1) unavailable 

Chen-00 Hierarchies No No O(n2) O(1) 10,000 

Table 2: Overview of browsing network models 

 

 

CONCLUSIONS 

It has become clear over the past decade that content-based image retrieval can benefit 

tremendously from letting the user take on a greater role in the retrieval process. In this chapter we 

have examined the different forms of user involvement in two contexts: query by example and 

interactive browsing. In the former setting, users initiate a search by submitting a query image and 

wait for images to be retrieved for them. A standard method of involving users in the subsequent 

stages of the process is to ask for relevance feedback on the retrieved images. The relevance 

information can be used to automatically modify the representation of the original query (query 

update), to adjust the function that is used to compute similarities between images and the query, or 

to learn a classifier between non-relevant and relevant images.  

 

The query by example setting has a number of limitations. Most importantly, it assumes that users 

already have an information need and a query image at their disposal.  Systems of this category do 

not generally support free exploration of a collection. The second part of this chapter has examined 

a number of browsing models where the user becomes the chief protagonist. In addition to requiring 

only a mental representation of the query, browsing structures have the advantage that they may be 

precomputed so that user interaction is fast. Browsing structures often take the form of hierarchies 

or networks and browsing takes place by moving between vertices of the graph. Hierarchies can 

readily be constructed through hierarchical clustering and support search from the more general to 

the more specific thus affording an impression of progressive refinement. However, it may equally 



create a sense of lost opportunities if navigation is restricted to the vertical dimension. 

Networks have the advantage over hierarchies that navigation may be less constrained. At the same 

time, it is more difficult to provide a global overview of the content so that it becomes increasingly 

important to organise objects in the network such that the local neighbourhood of the currently 

selected object contains sufficient information for users to decide where to go next. 

There is a more general problem with precomputed structures that affects most of the models 

discussed. By being precomputed, users are not generally in a position to remould the structure 

according to their own preferences. This seems necessary, however, as the structures are almost 

always constructed by fixing the distance metric and applying that same metric across the entire 

collection. The advantage of fast navigation comes at the price that users can no longer impose their 

own perception of similarity. 

 

There remain a number of exciting and important problems, a solution to which should lead to a 

new generation of smarter, more versatile systems for visual search. For example, while searching 

interactively for images users continuously provide implicit relevance feedback. In addition to 

exploiting this information for the current search session, one should clearly wish to endow systems 

with some form of long-term memory. Also, large collections will take an appreciable amount of 

time to be cast into a browsable structure. This seems acceptable provided the effort needs to be 

expended only once but many collections are dynamic with new images regularly being added and 

others removed. An update should not involve a complete recomputation of the structure but the 

extent to which the above models lend themselves to an efficient update is seldom investigated. 

Finally, most of the systems we have discussed either involve a precomputed structure or initiate a 

new query at every step. Systems of the first kind are often too rigid, systems of the second too slow 

for large collections. What may hold promise are hybrid structures that are partially precomputed 

but flexible enough to remain responsive to relevance feedback. 
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