ABSTRACT

Human-computer interaction is increasingly recoguito be an indispensable component of image
retrieval systems. A typical form of interactiontleat of relevance feedback whereby users supply
relevance information on the retrieved images. Tihisrmation can subsequently be used to

optimise retrieval parameters. The first part of thapter provides a comprehensive review of
existing relevance feedback techniques and alstusges a number of limitations that can be
addressed more successfully in a browsing framewniwsing models therefore form the focus

of the second part of this chapter where we willleate the merit of hierarchies and networks for
interactive image search. This exposition aimsravigde enough detail to enable the practitioner to

implement most of the techniques and to find arppieters to the relevant literature otherwise.
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INTRODUCTION
Similarity in appearance is often revealing abdbeg and potentially much deeper, functional and
causal commonalities between objects, events amatisins. Things that are similar in some respect
are likely to behave in a similar way and owe tlesiistence to similar causes. It is because of this
regularity that similarity is fundamental to marggoitive tasks such as concept learning, object

recognition and inductive inference.

Similarity-based reasoning requires efficient modietrieval. It is perhaps only in experimental
settings that subjects have direct sensory acodhbe fpatterns that they are asked to compare. In
most situations an observed pattern is evaluatembhbyparing it with patterns stored in memory.
The efficiency with which we can classify and recisg objects suggests that the retrieval process
is itself based on similarity. According to Stew&folfram (2004) the use of memory “underlies
almost every major aspect of human thinking. Cdjiegisi such as generalization, analogy and
intuition immediately seem very closely relatedhe ability to retrieve data from memory on the
basis of similarity.” He extends the ambit of sianily-based retrieval to the domain of logical
reasoning, which ultimately involves little moreath“retrieving patterns of logical argument that

we have learned from experience” (p. 627).

The notion of similarity is clearly not without goi@ms. Objects may be similar on account of
factors that are merely accidentals and that,aty &hed no light on the relationship that one @¢oul
potentially unveil. The problem of measuring similalargely reduces, therefore, to one of
defining the set of features that matter. The mobbf estimating the relative significance of
different features is one of information retriewabeneral. It is however greatly compounded in the
case of image retrieval in two significant wayssEidocuments readily suggest a representation in
terms of its constituent words. Images do not ssggech a natural decomposition into semantic
atoms with the effect that image representatioas@some extent arbitrary. Secondly, images
typically admit to a multitude of different meangidcach semantic facet has its own set of

supporting visual features and a user may be stigdan any one of them.

These challenges have traditionally been studi¢darcontext of QBE. In this setting the primary

role of users is to formulate a query, the actealch is taken care of by the computer. This



division of roles has its justification in the obgation that the search is the computationally most
intensive part in the process, but is questionabléthe grounds that the task of recognising
relevance is still best solved by the human udee. iitroduction of relevance feedback into QBE
systems turns the problem of parameter learniragyargupervised learning problem. Feedback on
retrieved images can help to find relevant featordsetter query representations. Although the
incorporation of relevance feedback techniquesreault in substantial performance gains, it does
not overcome the more fundamental limitations ef@BE framework in which they have been
formulated. Often users may not have an informatiead in the first place and wish to explore an
image collection. Moreover, the presence of anrmédion need does not mean that a query image
is readily at hand to describe it. Also brute fomearest neighbour search is linear in the cobdacti
size and the sub-linear performance achieved thrbigyarchical indexing schemes does not

extend to high dimensional features spaces witrertitan 10 dimensions.

Browsing provides an interesting alternative to QRE has, by comparison, received surprisingly
scant attention. Browsing models for image searol to cast the collection into some structure
that can be navigated interactively. Arguably ohthe greatest difficulties of the browsing
approach is to identify structures that are conduto effective search in the sense that they stippo
fast navigation, provide a meaningful neighbourhfmyadchoosing a browsing path and allow users

to position themselves in an area of interest.

The first part of this chapter will examine relegarieedback models in the QBE setting. After a
brief interlude in which we discuss limitationstbé QBE framework, we shift the focus to
browsing models that promise to address at leasé s these. Each section concludes with a

summary table that juxtaposes many of the workisithee been discussed.



QUERY BY EXAMPLE SEARCH

Query by example systems return a ranked list afyj@s based on similarity to a query image.
Relevance feedback in this setting involves ussrslling retrieved images depending on their
perceived degree of relevance. Relevance feedkabkigues vary along several dimensions which
makes any linear exposition somewhat arbitrary.sédecture the survey according to how
relevance feedback is used to update system paresr{@tery adaptation utilises relevance
information to compute a new query for the nexibof retrieval Metric optimisation involves an
update of the distance function that is used toprdmthe visual similarities between the query and
database image€lassification involves finding a decision function that optimadigparates

relevant from non-relevant images.

Query adaptation
Query adaptation describes the process wherelrgpmesentation of an initial query is modified
automatically based on relevance feedback. Queagtation was among the first relevance
feedback techniques developed for text retrievalt¢d & McGill, 1982) and has since been
adapted to image retrieval (Rui, Huang & Mehroi@97; Ishikawa, Subramanya & Faloutsos,
1998; Porkaew, Chakrabarti & Mehrotra, 1999; Zh&gu, 2001; Aggarwal, Ashwin and Ghosal,
2002; Urban, Jose & Rijsbergen, 2003; Kim & Chu2@)3). The two most important types of

guery adaptation are query point moving and quepaesion. We will be dealing with each in turn.

Query point moving
Query point moving is a simple concept and illugian Figure 1. Relevant (+) and non-relevant
(o) objects are displayed in a two-dimensionaldeaspace with the query initially being in the
bottom right quadrant (left plot). The images markg the user correspond to the bold circles. The
goal of query point moving is to move the querymdowards the relevant images and away from
the non-relevant images. Clearly, if relevant insafgem clusters in feature space, this technique
should improve retrieval performance in the negpgtright plot). Techniques differ in how exactly

this movement in feature space is achieved.



Feature 2
(o)
o
Feature 2
|
f
o

e (@ . | ® @ \.

@\ / | e e |

® \ /’ \ @ /_f
Feature 1 Feature 1

Figure 1 Moving the query point towards positivaeples.

In Urban et al.(2003), for example, images areasgnted in terms of a set of keywords and a
colour histogram. Given a set of images for whigh ser has indicated some degree of relevance,
the visual part of the query is computed as thgkted average over the relevant images.
Meanwhile, Rui et al. (1997) the representatiothefquery is altered using both relevant and non-
relevant images. The method employs Rocchio's farfii®71) originally developed for text
retrieval. In particular, given sets R and N oftfea vectors of relevant and non-relevant images,

respectively, the learned query vector is compated

1 1
q(t+1) =aq(t)+ﬁ[— X ]— 7 X ]
|RxR IN [N
wherea, B andy are parameters to be chosen. &ery = 0, the new query representation is the
centroid of the relevant images. The goal of théhoe is to move the query point closer towards

relevant images and further away from non-relevraages.

Yet another approach is taken by Ishikawa et &98) and Rui and Huang (2000) who find the
best query point as that point that minimises tiraraed distances to all relevant images. The

optimal query representation turns out to be thiglnted average of the representations of all
relevant images.



Query expansion
Query point moving suffers from a notable limitatidf relevant images form visually distinct
subsets (corresponding to multiple clusters inuieaspace), the technique may easily fail to move
the query into a better position as relevant imagegest multiple and mutually conflicting
directions. The problem arises from the requirent@mcover multiple clusters with only one query.
A simple modification of the above approach thkdahte this problem involves replacing the
original query point by multiple query points edcbated near different subsets of the relevant
images. This modification turns query point movingp what may more aptly be described as
guery expansion (Porkaew et al, 1999; Kim & Chut@)3; Urban & Jose, 2004a. Again,
differences between techniques are down to deiaifgrticular to the question of how to choose

the precise locations of the query points.

In Porkaew et al (1999), for example, relevant iegagre clustered and the cluster centroids chosen
as new query points. The overall distance of argerta the multi-point query is computed as the

weighted average over the distances to each qoany, pe.
D(x,Q) = > w,d(x,q).
aQ

The weights are taken to be proportional to the benmof relevant images in each cluster. Thus,
guery points that seem to represent the user retéel bave a greater weight in the overall distance
computation. One should note, however, that tHigse retains the feature it seeks to overcome by

linearly averaging over individual distances. Iotfat can be shown that the overall result is

equivalent to query point moving where the new yyeint is given bwaqq. If d is taken to be
aQ

the Euclidean distance, for example, then the istawlce lines for a multi-point query remain

circles now centred at the new query point.
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Figure 2 Multi-point queries: From query point mogitowards disjunctive queries.



This is shown on the left plot in Figure 2. The hwet reduces therefore to the solution suggested
by Ishikawa et al (1998) and Rui and Huang (2000)properly account for the cluster structure it
seems more reasonable to treat the multi-pointyggeea disjunctive query, an approach taken in
more recent work by Wu, Faloutsos, Sycara and P@&0@0), Kim and Chung (2003) and Urban

and Jose (2004a). In the second work, for exanipéegthers suggest a remedy in the form of

D(xQ) = Y. d(x 0"

aoQ
where q is the representation of a cluster@argla parameter that confers the desired non-
convexity. The iso-distance lines of the model wittanging from 1 to 1/4 are shown in Figure 2.
Fora =1, the model reduces to that of Porkaew etLl899).

The above methods have in common that they areecoed with combining distance scores. An
alternative approach to multi-point queries is takg Urban and Jose (2004) who adapt a rank-
based aggregation method, median-rank aggregdtamn, Kumar & Sivakumar, 2003), to multi-
point image queries and establish superior perfocm@aver the simple score-based method of
Porkaew et al (1999). The rank of an image p isithaber of images whose distance scores are
smaller or equal to that of p. This particular neetinvolves computing the image ranks with
respect to each of the different query points. eelian of those ranks becomes the final rank
assigned to that image. If an image has a lardardis to only a small number of query points,
these will have no effect on the final rank of tmage. This provides support for more disjunctive

gueries, but the method is equally robust agaimssually small distances.

Distance metric optimisation

Introduction
The second large group of relevance feedback tgeabaiis concerned with modifying the distance
metric that is used to compute the visual simiksibetween the query and the database images. As
noted earlier, one of the problems pertaining #orthtion of similarity relates to the question of
how to weigh different features. A feature thaga®d at capturing the fractal characteristics of

natural scenes may not be good for distinguishatg/een yellow and pink roses. How can we infer



from relevance feedback which feature is imporéartt which one isn't?

A naive method of computing the distance betweenrgpresentations is to concatenate all
individual feature vectors into one and measuratb@nce between two vectors x and y. In
hierarchical models, distances are computed betimeridual features and the resulting distances
are aggregated. In both models, we have to contpatdistance between two vectors. In image

retrieval, commonly used distance metrics are itss of the general Minkowski metric,

D(x, y) {ZI& -y, I"T,wo-

This reduces to the Euclidean metricdor 2 and to the Lmetric fora = 1. The advantage of the
Minkowski metric is that it can readily be paramisted by adding a weight to each component-

wise difference. Fos = 2, we obtain a weighted Euclidean distance

D(x,y){Zwi(x —yﬂz,. (1.1)

where one typically constrains the weights to samrte and to be non-negative. Relevance
feedback can now help to adjust these weightsatadievant images tend to be ranked higher in
subsequent rounds. The idea is illustrated in EigutUnder the weighted Euclidean metric with
equal weights the iso-distance lines in a two-disi@mal vector space are circles centred at the
guery vector. In this example, the one image markés/ant is much closer to the query with
respect to the second feature. On the assumptidm ttelevant image has more relevant images in
its proximity, we wish to discount distances aldng dimension along which the relevant image
differs most from the query. Here this is achiebgdiecreasing the weight for feature 1 with the
effect that the iso-distance lines become ellipsaitth their long axes parallel to that of the teas

important feature.
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Figure 3: Changing parameters of the metric.

In hierarchical models these distances need t@b#¥med. By far the most popular aggregation

method is the weighted linear sum that we encoadtearlier in the context of multi-point queries,
k
D(x,q) = > wd; (x,0), (1.2)
i=1

where we now sum over k features rather than owerygpoints. The great majority of relevance
feedback methods are concerned with adjusting weigfheach individual feature component either
in a flat (Ishikawa et al., 1998, Peng, Bhanu amy(1999) or in a hierarchical feature model
(Sclaroff, Taycher & La Cascia, 1997; Rui, Huange@a & Mehrotra, 1998; Schettini, Ciocca &
Gagliardi, 1999; Rui & Huang, 2000; Heesch and Rue2003; Urban & Jose, 2004b). We shall

refer to the two types of weights as component tsignd feature weights, respectively.

Early models
In the hierarchical model proposed by Rui et @9Q) the weight of a component is taken to be
inversely proportional to the standard deviatiothat component among relevant images. This
heuristic is based on the intuition that a feattmmponent that shows great variation among the
relevant images does not help to discriminate betwelevant and non-relevant images. Although
any function that monotonically decreases withviliégance would appear to be a good candidate, it
turns out that dividing by the standard deviatigreas with the optimal solution that was later
derived in the optimisation framework of Ishikavtaak (1998). The feature weights are adjusted
by taking into account both negative and positix@neples using a simple heuristics. Although
experiments suggest a substantial improvementiieval performance on a database containing

more than 70,000 images the figures should beetlesith great caution as the number of images



on which relevance feedback is given lies in theew@hat unrealistic range of 850 to 1100.

Optimising generalised Euclidean distances
An elegant generalisation of the relevance feedbaethod of Rui et al. (1998) was developed by
Ishikawa et al. (1998). It is motivated by the alvadion that relevant images may not necessarily
align with one of the feature dimensions and sonbghted Euclidean distance used in Rui et al.
(1998) cannot fully account for their distributi¢ts iso-distance lines form ellipsoids whose
diameters are parallel to the coordinate axes}k liimitation can be addressed by considering a
generalisation of the Euclidean distance, introduneChandra Mahalanobis under the name D-
statistic in the study of biometrical data and reamply known as the Mahalanobis distance. It is
more conveniently written in matrix notation as

D(x,y) = (x-a)" M(x-q),

where M is any square matrix. If M is a diagonatmmathen the expression reduces to Equation
(1.1) with the weights corresponding to the diageftaments. If M is a full matrix, then the

expression contains products between the diffeseatany two components. In two dimensions

with
M =
c d

D(x,q) = a(xl - q1)2 +(b+ C)(Xl - ql)(xz - qz) + d(X2 - qz)2

this writes as

and similarly for higher dimensions. The iso-distatines of the general Mahalanobis metric are
ellipsoids that need not align with the coordirates. The components of M are found by
minimising the sum of the distances between thg@sanarked relevant and the query. The
interesting twist of the model is that the quesgit is re-estimated at each step. The optimisation
thus determines not only M but also the query wetspect to which the distances are minimised.
The method integrates the two techniques of queiryt pnoving and metric update in one
optimisation framework. The objective function is
N . .
min>_vi(x' -g) M(x' -aq), (1.3)
M, i=1

where N is the number of relevant images, arairelevance score given by the user. Note that x



here denotes the vector of tife image, not theth component of some vector x. Under the
additional constraints that det(M) = 1 and thatsMymmetric the solutions for g and M are

N
DViX 1

q='% — and M =[detC)]"C T,

2V

i=1
where C is the covariance matrix of the positivaregles. In order for the inverse of C to exist,
relevance feedback needs to be given on at leasaag images as there are feature components. If

this is not the case, a pseudo-inverse can beinsiad.

Based on our preceding discussion, some of thedliioins of the approach taken by Ishikawa et al.
(1998) should be evident: First, the approach &cttie problem of query point moving but does
not support multi-point queries; secondly, it exid@nly positive feedback which might be rather
scarce at the beginning of the search; thirdlgsgumes a flat image representation model with all
features for one image concatenated into one suggitor. This inflates the number of parameters

to be learned with the effect of rendering parameséimation less robust.

To address the last shortcoming, Rui and HuangO(2@gtend the optimisation framework of
Ishikawa et al. (1998) by adding feature weights. each feature, distances are computed using
the generalised Euclidean metric and the ovemaillaiity is obtained according to Equation (1.2).
Like in Ishikawa et al. (1998) the aim is to mingmithe summed distances between relevant images
and the query. The objective function takes themfof Equation (1.3) except for an additional inner

sum,

min %Vi iwj (i —q]')T M(X; —d;).

Mgw i=1 j=1
where, as before, v are relevance scores, w aneréeaeights and;xs thejth feature vector of the
ith relevant image. The optimal solutions for q &hdre the same as in Ishikawa et al. (1998)
while the feature weights are given by

\/zizlvid(xij .q;)

where the squared denominator is the sum of thghiesd distances between the query and all




relevant images under feature j.

Optimisation with negative feedback
The above methods only make use of positively ladetxamples despite the fact that negative
feedback has repeatedly been shown to preven¢theval results from converging too quickly
towards local optima (Mueller, Mueller, Squire, Miaand-Maillet & Pun, 2000; Vasconcelos &
Lippman, 2000; Heesch and Rueger, 2002; Muellerchand-Maillet & Pun, 2002). An
innovative method that takes explicit account gjateve examples is by Aggarwal et al. (2002).
They adopt the general framework of Ishikawa ef18198) by minising Equation (1.3) but the extra
constraint is added that there are no non-relewages within some small neighborhood of g. This
is achieved by automatically modifying the relevascores v. In particular, given some solution q
and M of Equation (1.3) with an initially unifornesof relevance scores, the relevance score of the
relevant image that is farthest from the currer@rgypoint q is set to zero and the scores of any
other positive image set to the sum of its quaddistances from the negative examples.
Minimising the objective function again with theuthaltered scores yields a new solution g and M,
which is more likely to contain only relevant imagé&his scheme is iterated until the neighborhood

contains only relevant images.

Another example of metric optimisation involvinggative feedback is by Lim, Wu, Singh and
Narasimhalu (2001). Here, users are asked to teredneved images and the system subsequently
minimises the sum of the differences between tlee-gswen ranks and the computed ranks.
Because of the integral nature of ranks, the duamction is not analytic and numerical optimisation

is required to find the feature weights.

A method that admits to an analytic solution isga®ed in Heesch and Rueger (2003). Relevance
feedback is given by positioning retrieved imageser to or further away from the query that is
originally situated at the centre (Figure 4 leftaniddle). The user provides a real-valued vector o
new distances, and the objective function is time stithe squared errors between the distances
computed by the system and the new distances sddpjithe user. The distance function that

minimises the objective function is used for th&tnetrieval step (Figure 4 right).



Figure 4: In search for blue doors. Left: initigplay with default distance metric; Middle: displa

after user feedback; Right: display when retriewinidn newly learned distance metric.

Multi-dimensional scaling
The methods discussed thus far retrieve a rankedflimages, often organised on a two-
dimensional grid or as in Heesch and Rueger (2008)e form of a spiral around the query.
Crucially, however, the mutual distances within $le¢ of retrieved images are not taken into
account for the display, i.e. returned images @natvisually similar may not necessarily be
displayed close to each other. Rubner, Guibas anda§i (1997) apply multi-dimensional scaling
(Kruskal, 1964) to the search results to achien®ee structured view. Given a set of objects and
their mutual distances, we can place each objexthigh-dimensional metric space such that the
distances are exactly preserved. For practicalqaa® the preferred dimensionality of the space is
two for which distances can only be approximatédte flesult is an approximate two-dimensional
embedding that preserves as far as possible ttendes between objects. The technique can be
applied both to the set of retrieved images butatso be used as a means to display the entirety of
small collections in a perceptually meaningful widgvigation through the collection can be

achieved by letting the user select one of theenetd images as the new query.

Another attempt of a synthesis between automai@aiseand browsing is described in Santini and
Jain (2000) and Santini, Gupta and Jain (2001)il&ito Rubner et al. (1997), the proposed system
seeks a distance-preserving projection of the isagéo two dimensions. As well as selecting an
image from the display as the new query, users nmages to new positions. In Santini et al.
(2000), the system finds feature and componentiw®igpat minimise the mismatch between the

relations imposed by the user and the computedrdiss. The system thus uses information about



the desired relative distances between images.

Smilarity on manifolds
Up to now, we have only considered global metiistances for all images are computed using
the same, possibly parameterised distance metich®©assumption that relevant images fall on
some manifold in the Euclidean feature space, @bapproach would be to find the best local
metric. He, Ma and Zhang (2004) propose to appratenthe metric structure of the manifold at the
location of the query. The approximation makesafgsositive examples, which are assumed to be
close to the query under the geodesic distancealoeithm proceeds by computing the k-nearest
neighbours of each of the positive examples. Theruof these sets constitutes the set of
candidates from which we shall eventually retrieMee geodesic distance is approximated by the
topological distance on a graph whose verticesespond to elements of the ‘candidate’ set along
with the query and the positive examples. Edgesanstructed between any two images if their
unweighted Euclidean distance does not exceed Hue&hold. The geodesic distance is then
approximated by the topological distance on th@lyréhat is, the length of the shortest path
between two images. Retrieval on the manifold retdine set of images with the smallest

topological distance to the query.

Similarity search as classification
A third class of techniques treats the problemoflarity search as one of classification. The
techniques are similar to the class of metric op@tion discussed in the preceding section and

some can be interpreted as estimating parametsmod similarity function.

Probabilistic approaches
Methods that approach the classification problesmfa Bayesian perspective explicitly model
probability densities. The aim of these methods @ssign class probabilities to an image based on
the class-specific feature densities estimated fielavance feedback. Let p be an image, x its
feature representation and R and N be the sedenfant and non-relevant images. By Bayes' rule

we have



P(xIPOR)P(pUR)
P(X) '

In Nastar, Mitschke and Meilhac (1998) the featlgasity of relevant images P(X|R) is

P(pUOR[x) =

assumed to be Gaussian, and features are assuimedhttependent so that R{R|x) is a product

of Gaussians,
K
P(PURIX) O] P | POR).
i=1

If we were only to consider relevant examples,nfegan and standard deviation can readily be
found using the principle of maximum likelihood. $tiar et al. (1998) suggest an iterative technique
that takes into account negative examples. It tliedy determining the proportion of negative
examples falling into ad3confidence interval around the current mean aadtbportion of

positive examples falling outside of it. The ensimply the sum of the two terms. To better
account for multi-modality a mixture of Gaussiaas @e used, an extension that has the slight
disadvantage of requiring numerical optimisationgarameter estimation (Vasconcelos &
Lippman, 2000; Yoon & Jayant, 2001).

Meilhac and Nastar (1999) drop the assumption afSSianity of feature densities and use a Parzen
window for non-parametric density estimation. Featlensities are estimated for both relevant and

non-relevant images and the decision rule is
1 () =—log[P(x; | PUR)] +log[P(x; | pLN)]

for each feature. Assuming independence of featneesbtain

k

1(x) =2 (=log[P(% | pOR)]+log[P(x; | pON)])

i=1
The additiveness of this density estimation metimadtes it incremental, i.e., at every round a fixed
number of terms is added to the decision functiaking the algorithm cost-effective.
The Bayesian framework developed by Cox, Miller,@mndro and Yianilos (1998) and Cox,
Miller, Minka, Papathomas and Yianilos (2000) tamget search is based on an explicit model of
what users would do given the target image theytwidre system then uses Bayes' rule to predict

the target given their action.



Discriminant classifiers
An alternative approach to classification that doeisrequire an explicit modelling of feature
densities involves finding a discriminant functibrat maps features to class labels using some
labelled training data.
An increasingly popular classifier is the suppattor machine or SVM (Vapnik, 1995). SVMs
typically map the data to a higher-dimensionaldeatspace using a possibly non-linear transform
associated to a reproducing kernel. Linear disoraton between classes is then attempted in this
feature space. SVMs have a number of advantage®ther classifiers that make them particularly
suitable for relevance feedback methods (Hong, &&uang, 2000; Chen, Zhou & Huang, 2001,
Tong & Chang, 2001; Jing, Li, Zhang, Zhang & Zha?@Q3; He, Li, Zhang, Tong & Zhang, 2004;
Crucianu, Ferecatu & Boujema, 2004). Most notaBiyM avoid too restrictive distributional
assumptions regarding the data and are flexibpgias knowledge about the problem can be taken
into account by guiding the choice of the kernel.
In the context of image retrieval the training detasists of the relevant and non-relevant images
marked by the user. Learning classifiers relialslysach small samples is a particular challenge.
One potential remedy is that of active learningi(€adl994). The central idea of active learning is
that some training examples are more useful fomitrg the classifier than others. It is guided by
the more specific intuition that points close te ttyperplane, that is, in regions of greater
uncertainty regarding class membership, are méstrative and should be presented to the user
for labelling instead of a random subset of unligogboints. Applications of active learning to
image retrieval are found in Tong and Chang (2@01) He et al. (2004). In the former work a
support vector machine is trained over successirds of relevance feedback. In each round the
system displays the images closest to the curggrerplane. Once the classifier has converged, the
system returns the top k relevant images farthiest the final hyperplane. Although the method
involves the user in several rounds of potentiaiigratifying feedback, the performance of the
trained classifier improves over that of alternatiechniques such as query point moving and query
expansion.
A summary of much of the above can be found indhée below. For each system, we note the
kind of information communicated through feedbadble, part of the system that is modified in

response.



Author Type of Range Objective

Feedback
Rui-97 +/- Binary Query point moving
Rui-98 + Real Query point moving
Rui-98 + Discrete Metric optimisation
Rui-00 + Real Query point moving
Porkaew-99 + Binary Query expansion
Ishikawa-98 + Real Query point moving
Nastar-98 +/- Binary Distribution of relevant
Meilhac-99 +/- Binary Distribution of relevant
Lim-01 +/- Discrete Metric optimisation
Ishikawa-98 + Real Metric optimisation
Heesch-03 +/- Real Metric optimisation
Urban-03 + Binary Query point moving
Urban-04 + Binary Query expansion
Kim-03 + Binary Query expansion
Tong-01 +/- Discrete Discrimant classifier
He-04 + Binary Metric optimisation
Aggarwal-02 +/- Real Metric optimisation

Table 1: Overview of relevance feedback systemsldged in a QBE setting
INTERLUDE
Let us now take a step back and assess the mdhi¢ general methodology described above. The
reported performance gains through relevance feddn@ often considerable even though any
performance claims must be judged carefully agdiesexperimental particulars, especially the
database size, the performance measures, angtheftgueries. Below we suggest two major

problems with the relevance feedback methodology.

Parameter initialisation
The utilisation of relevance feedback for queryangon and multi-modal density estimation has
attracted much attention and appears justifiechergtound that the feature distributions of most

relevance classes tend to be multi-modal and fataral groups in feature space. But unless the



guery itself consists of multiple images representhese different groups, we should not
reasonably expect images from different groupseteelrieved in response of the query. If
anything, the retrieved images will contain imafjesn the cluster to which the query image is

closest under the current metric.

But not only do relevance classes often form vigudiktinct clusters, images often belong to a
number of relevance classes. This is an express$ithe semantic ambiguity which pertains in
particular to images and which relevance feedbaeksto resolve. With queries consisting of
single images, the question to resolve is whickhinaagroup the query image belongs to, not so
much which the different natural groups belongmgfte relevance class of the query. But while
some systems cater for multi-modality, none exiiicleal with polysemy. By initialising

parameter values, systems effectively impose acpéat semantic interpretation of the query.

The problem of parameter initialisation has saéaeived insufficient attention. One notable
exception is the work by Aggarwal et al. (2002) ethwe had mentioned earlier in a different
context. The system segments the query image, resdifich segment in various ways and displays
a set of modified queries to the users who marknsegs that continue to be relevant. The feature
weights are then computed similar to Rui et al9{)%y considering the variance among the

relevant segments.

Another method of parameter initialisation thatesy similar in spirit to that of Aggarwal (2002) i
developed in Heesch (2005). The method seeks wmsexbe different semantic facets of the query
image by finding all images that are most simiaittunder Equation (1.2) for some weight set w.
As we vary w, different images will become the esaneighbour of the query. For each such
nearest neighbour we record its associated w, whieemay regard as a representation of one of the
semantic facets users may be interested in. Ustrst & subset of these nearest neighbours and
thereby implicitly select a set of weights. Thessgghts are then used to carry out a standard
similarity search. The method outperforms relevaredback methods that retrieve with an

initially uniform weight set w but is not inexpemsicomputationally. NKINetworks which we

shall discuss in the next section provide anotttengt to tackle the initialisation problem.



Exploratory search
With very few exceptions, the methods describedralvely on the assumption that users know
what they are looking for. The methods are desigadtbme in on a set of relevant items within a
few iterations and do not support efficient exptiana of the image collection. We shall see in the
second half of this chapter that more flexible iatéion models may address this issue more

successfully.

SEARCH THROUGH BROWSING
Browsing offer an alternative to the conventionaithod of query by example but have received

surprisingly little attention. Some of the adva@s@f browsing are as follows:

* Image browsing requires but a mental representafitime query. Although automated image
annotation (Lavrenko, Manmatha & Jeon, 2003; Féfapmatha & Lavrenko, 2004; Zhang,
Zhang, Li, Ma & Zhang, 2005; Yavlinsky, SchofielddaRueger, 2005) offers the possibility to
reduce visual search methodologically to traditidext retrieval, there may often be
something about an image which cannot be exprassedrds leaving visually guided
browsing a viable alternative.

* Retrieval by example image presupposes that ubeeglg have an information need. If this is
not the case, enabling users to navigate quickiydsn different regions of the image space
becomes of much greater importance.

* For large collections, time complexity becomessaué. Even when hierarchical indexing
structures are used, performance of nearest naiglsearches has been shown to degrade
rapidly in high-dimensional feature spaces. Fotipaar relevance feedback techniques,
approximate methods may be developed that expgloielations between successive nearest
neighbour searches (Wu & Manjunath, 2001), butethieres not exist a universal cure.
Meanwhile, browsing structures can be precomputeding interaction to be very fast.

* The ability of the human visual system to recogmpiaterns reliably and quickly is a marvel
yet to be fully comprehended. Endowing systems wiithilar capabilities has proven an
exceedingly difficult task. Given our limitations understanding and emulating human
cognition, the most promising way to leverage thteptial of computers is to combine their

strengths with those of users and achieve a syrikrgygh interaction. During browsing users



are continuously asked to make decisions baseldeoretevance of items to their current
information need. A substantial amount of timepserd, therefore, by engaging users in what

they are best at, while exploiting computationgbraces to render interaction fast.

Hierarchies
Hierarchies have a ubiquitous presence in our difdlyexamples include the organisation of files
on a computer, the arrangement of books in a palsiicary, the presentation of information on

the web, employment structures, postal addressemany more.

To be at all useful for browsing, hierarchical stuires need to be sufficiently intuitive and allow
users to predict in which part of the tree the @elsimages may reside. When objects are described
in terms of only a few semantically rich featurasilding such hierarchies is relatively easy. The

low-level, multi-featural representation of imagesders the task substantially more difficult.

Agglomerative Clustering
The most common methods for building hierarchidsyisvay of clustering either by iteratively
merging clusters (agglomerative clustering) oréxursively partitioning clusters (divisive

clustering), see Duda (2001) for an overview.

Early applications of agglomerative clusteringrt@ge browsing are described in Yeung and Liu
(1995), Yeung and Yeo (1997), Zhang and Zhong (1888 Krishnamachari and Abdel-Mottaleb
(1999}. The first two papers are concerned withewithrowsing and clustering involves automated
detection of topics and for each topic the constitistories. Stories are represented as video
posters, a set of images from the sequences #atiate with repeated or long shots and act as
pictorial summaries. In Zhang and Zhong (1995) ¥adg (2004} the self-organising map
algorithm (Kohonen, 1995) is applied to map images two-dimensional grid. The resulting grid
is subsequently clustered hierarchically. One efrttajor drawbacks of the self-organising map
algorithm (and neural network architectures in gaheés its computational complexity. Training
instances often need to be presented multiple tandsconvergence has to be slow in order to

achieve good performance, in particular so for ddeatures



Chen, Bouman and Dalton (1998; 2000) propose theeg of a similarity pyramid to represent
image collections. Each level is organised suchdimailar images are in close proximity on a two-
dimensional grid. Images are first organised inkonary tree through agglomerative clustering
based on pairwise similarities. The binary tresuilssequently transformed into a quadtree which
provides users a choice of four instead of twoed#ht child nodes. The arrangement of cluster
representatives is chosen such that some measovermill visual coherence is maximised. Since

the structure is precomputed, the computationdliocsrred at browsing time is slight.

Divisive clustering
Agglomerative clustering is quadratic in the numbemages. Although this can be alleviated by
sparsifying the distance matrix, this method becomaccurate for dense feature representations

and is more amenable to key-word based documerdgseptations.

A computationally more attractive alternative igislive clustering whereby clusters are recursively
split into smaller clusters. One popular clustem@hgprithm for this purpose is k-means. In
Pecenovic, Do, Vetterli and Pu (2000) it is appte®,000 images with cluster centroids being
displayed according to their position on a globaihn&on map. However, compared to
agglomerative clustering, the divisive approachlieen found to generate less intuitive groupings
(Yeung & Yeo, 1997; Chen et al., 2000) and the farhms remained the method of choice in spite

of its computational complexity.

Networks
Nearest neighbour networks
A significant work on interlinked information struces dates back to the mid-1980s (Croft &
Parenty, 1985). It proposes to structure a cadleaif documents as a network of documents and
terms with accordingly three types of weighted exddée authors suggest to keep only links
between a document and the document most similgrand similarly for terms. Term-term and
document-document links thus connect nearest neigbland each document gives rise to what a

star cluster comprising the document itself anégdjacent nodes. Although the structure is



intended for automated search, the authors aresavar "as well as the probabilistic and cluster-
based searches, the network organisation could &tle user to follow any links in the network

while searching for relevant documents. A spe@tleval strategy, called browsing, could be

based on this ability." (p. 380). However, the bemof document-document edges does not exceed
by much the number of documents, and star cluaterdisconnected rendering browsing along

document-document nodes alone impractical.

Importantly, the work has inspired subsequent viayrkCox (1992; 1995). Cox motivates

associative structures for browsing by observirag theople remember objects by associating them
with many other objects and events. A browsingesysbn a static database structure requires a rich
vocabulary of interaction and associations." Hesai is to establish a nearest neighbour network for
each of a set of the different object descriptBesng aware that different features may be

important to different users, Cox realises the irtgooce of interconnecting nearest neighbour
networks to allow multi-modal browsing.

Unfortunately, Cox's work has not become as wittalywn as perhaps it should have. What may
partly account for this is that content based im&geeval was then in its very early beginning and
the first research programme that grew out of titéal phase of exploration happened to be that of

guery by example pushing browsing somewhat to égpbery.

NN* Networks
The problem with many of the above structures as the metric underlying their construction is
fixed. The advantage of fast navigation theretmmmes at a prize: users are no longer in a position
to alter the criterion under which similarity idged. The structures thus deride the principalttene
that motivates relevance feedback techniques. ZhduHuang (2001) arrive at a similar conclusion

when they observe that ‘the rationale of relevadreelback contradicts that of pre-clustering.’

A browsing structure that has been designed withithmind are NN Networks (Heesch, 2005;
Heesch, Pickering, Yavlinsky & Rueger (2004); Hée&®Rueger, 2004; 2005). The structure is a
directed graph where an arc is established fromit g is the nearest neighbour of p under at
least one combination of features (representeerimg of index i in Equation (1.2)). Instead of

imposing a particular instance of the similaritytriee NN Networks expose the different semantic



facets of an image by gathering all top-ranked iesagnder different metrics. During browsing
users select those neighbours in the graph thathniaeir target best. NNNetworks exhibit small-
world properties (Watts & Strogatz, 2000) that m#kem particularly well suited for interactive
search. Relevant images tend to form connectedapbg so that a user who has found one
relevant image is likely to find many more by falimg “relevance trails” through the network. The
screenshots below illustrate the diversity amormgskt of neighbours for three different positions i
a network of 32,000 Corel images. The size of thage is a measure of the number of different

metrics under which that image is more similam® ¢urrently selected image than any other.

Figure 5: The set of Nfin a network of 32,000 Corel images for three déffe: positions.

Pathfinder networks
For browsing at least parts of the network nedaktoisualised. The large number of links in a
network may prevent users from recognising stratfo@tterns that could aid navigation. A
practical strategy is to reduce the number of lifikee pathfinder algorithm is one example of a
link-reduction algorithm (Dearhold & Schvanevelt®90). It is not concerned with constructing
the original network but converting a network of&md to a sparser network. The pathfinder
algorithm removes an edge between vertices if thrists another path of shorter length. An
application of pathfinder networks to the problehomanising image collections is found in Chen,
Gagaudakis and Rosin (2000) but the scope forant®en is limited. Indeed, it seems that the

principal application domain of pathfinder netwoheas so far been visual data mining, not



interactive browsing. The reason is quite likelyotofound in the computational complexity that is
prohibitive for collection sizes of practical sifjoance. Moreover, visualisation and navigation
places somewhat different structural demands oneitveorks. While visualisation requires the
extraction of only the most salient structure,iretey some degree of redundancy renders the

networks more robust for navigation purposes.

Dynamic trees. ostensive browsing
The ostensive model of Campbell (2000) is iterapeery by example in disguise but the query only
emerges through the interaction of the user wighctbllection. The impression for the user is tHat o
navigating along a dynamically unfolding tree stawe. While originally developed for textual
retrieval of annotated images, the ostensive misdejually applicable to visual features (Urban et
al., 2003). It consists of two components: the can@ponent is the relevance feedback model, the

other is the display model.

Relevance feedback takes the form of selectingnage from those displayed. A new query is
formed as the weighted sum of the features ofahe previously selected images. In Urban et al.
(2003) images are described by colour histogrameia sequence of selected images, the colour
representation of the new query is given as thghited sum of individual histograms with weights
taking the form of w= 2' (i = 0 indexing the most recent image).

The display model is that of an unfolding tree clie: images closest under the current query are
displayed in a fan-like pattern to one side of¢haently selected image. Users can select an image
from the retrieved set, which is placed in the serdnd a new set of images are retrieved in
response. Since previous images are kept on thiagdithe visual impression of the user is that of
establishing a browsing path through the collectiorrban et al. (2003) the browsing path is

displayed in a fisheye view (see Figure 6).
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Figure 6: The interface of the ostensive browsedlyan et al. (2003)

The ostensive model attempts to track changingnmition needs by continuously updating the
guery. Which set of images are retrieved dependshoch path the user has travelled to arrive at
the current point. Because the number of suchréifitgpaths grows quickly with the size of the
image collection, it is impractical to compute algl structure beforehand. Nonetheless, for the
user the impression is one of navigating in a ket unconstrained manner through the image
space. Unlike many other relevance feedback sysigsess do not have to rank or label images, or
change their relative location. The interactiothiss light and effective. Again, a summary of the

models is given below (Table 2).



Author Structure RFE Flexible Offline | Online # images
Metric
Cox-95 Networks Ng Yes o) 0(1) <100
Heesch-04 Networks NDp Yes o(n) o) 32,000
Chen-00 Networks NoO No o(n’) 0(1) 279
Urban-03 Dynamic Trees Yes Yes o) O(n) 800
Zhang-95 Hierarchies Np No o(m) O(1)| unavailable
Chen-00 Hierarchies Np No o) o) 10,000

Table 2: Overview of browsing network models

CONCLUSIONS
It has become clear over the past decade thatrddoésed image retrieval can benefit
tremendously from letting the user take on a greale in the retrieval process. In this chapter we
have examined the different forms of user involvete two contexts: query by example and
interactive browsing. In the former setting, usarsate a search by submitting a query image and
wait for images to be retrieved for them. A staddaethod of involving users in the subsequent
stages of the process is to ask for relevance &bdbn the retrieved images. The relevance
information can be used to automatically modify theresentation of the original query (query
update), to adjust the function that is used tomata similarities between images and the query, or

to learn a classifier between non-relevant andasleimages.

The query by example setting has a number of lilorta. Most importantly, it assumes that users
already have an information need and a query inaagjeeir disposal. Systems of this category do
not generally support free exploration of a coltatt The second part of this chapter has examined
a number of browsing models where the user bectimeeshief protagonist. In addition to requiring
only a mental representation of the query, browsingctures have the advantage that they may be
precomputed so that user interaction is fast. Bnogvstructures often take the form of hierarchies
or networks and browsing takes place by moving betwertices of the graph. Hierarchies can
readily be constructed through hierarchical clustgeand support search from the more general to

the more specific thus affording an impressionrofypessive refinement. However, it may equally



create a sense of lost opportunities if navigaisaestricted to the vertical dimension.

Networks have the advantage over hierarchies @nagation may be less constrained. At the same
time, it is more difficult to provide a global owew of the content so that it becomes increasingly
important to organise objects in the network sinet the local neighbourhood of the currently
selected object contains sufficient informationdsers to decide where to go next.

There is a more general problem with precomputet&ires that affects most of the models
discussed. By being precomputed, users are notagnia a position to remould the structure
according to their own preferences. This seemsssacg, however, as the structures are almost
always constructed by fixing the distance metrid applying that same metric across the entire
collection. The advantage of fast navigation coatekle price that users can no longer impose their

own perception of similarity.

There remain a number of exciting and importanbf@ms, a solution to which should lead to a
new generation of smarter, more versatile systemgisual search. For example, while searching
interactively for images users continuously providelicit relevance feedback. In addition to
exploiting this information for the current seassssion, one should clearly wish to endow systems
with some form of long-term memory. Also, largeleotions will take an appreciable amount of
time to be cast into a browsable structure. Thesrseacceptable provided the effort needs to be
expended only once but many collections are dynariticnew images regularly being added and
others removed. An update should not involve a detapecomputation of the structure but the
extent to which the above models lend themselves tefficient update is seldom investigated.
Finally, most of the systems we have discussee@eitivolve a precomputed structure or initiate a
new query at every step. Systems of the first kiredoften too rigid, systems of the second too slow
for large collections. What may hold promise arbrig/structures that are partially precomputed

but flexible enough to remain responsive to releedeedback.



REFERENCES

Aggarwal G, Ashwin T and Ghosal S (2002). An imeggieval system with automatic query
modification. IEEE Trans Multimedia, 4(2):201-213

Bang H and Chen T (2002). Feature space warpingpfmoach to relevance feedback. In Proc
Int'l Conf Image Processing

Campbell 1 (2000). The ostensive model of develgpirformation-needs. PhD thesis, University of
Glasgow

Chen C, Gagaudakis G and Rosin P (2000). Simithaised image browsing. In Proc IFIP World
Computer Congress

Chen J-Y, Bouman C and Dalton J (2000). Hierardhiocavsing and search of large image
databases. IEEE Trans Image Processing, 9(3)

Chen Y, Zhou X and Huang T (2001). One-class SVMdarning in image retrieval. In Proc Int'l
Conf Image Processing

Cohn D, Atlas L and Ladner R (1994). Improving gatieation with active learning. Machine
Learning, 15(2):201-221

Cox |, Miller M, Minka T, Papathomas T and YianilBg2000). The Bayesian Image Retrieval
System, PicHunter: Theory, implementation, and pspbysical experiments. IEEE Trans Image
Processing, 9(1):20-38

Cox |, Miller M, Omohundro S and Yianilos P (1998 optimized interaction strategy for

Bayesian relevance feedback. In Proc IEEE Conf Gaenp/ision and Pattern Recognition, pages
553-558

Cox K (1992). Information retrieval by browsing.mPmoc Int'l Conf New Information Technology
Cox K (1995). Searching through browsing. PhD thddniversity of Canberra

Croft B and Parenty T (1985). Comparison of a netvetructure and a database system used for
document retrieval. Information Systems, 10:377-390

Crucianu M, Ferecatu M and Boujemaa N (2004). Releg feedback for image retrieval: a short
survey. In: State of the Art in Audiovisual Cont@dsed Retrieval, Information Universal Access
and Interaction including Datamodels and Languages

Dearholt D and Schvaneveldt R (1990). Propertig3adfinder networks, In Schvaneveldt R (Ed.),
Pathfinder associative networks: Studies in knoggedrganization. Norwood, NJ: Ablex

Duda R, Hart P and Stork D (2001). Pattern Recagnitiley, New York.



Fagin R, Kumar R and Sivakumar D (2003). Efficisimilarity search and classification via rank
aggregation. In Proc ACM Intl Conf Management et& pages 301-312

Feng S, Manmatha R and Lavrenko V (2004). Multipenoulli relevance models for image and
video annotation. In Proc Int'l Conf Computer Visiand Pattern Recognition

Fowler R, Wilson B and Fowler W (1992). Informatioavigator: An information system using
associative networks for display and retrieval. &&pent of Computer Science, Technical Report
NAG9-551, 92-1

He J, Li M, Zhang H-J, Tong H and Zhang C (2004é¢a¥l version space: a new active learning
method for content-based image retrieval. In Pnd't Workshop on Multimedia Information
Retrieval in conjunction with ACM Multimedia, pag#Ss-22

He X, Ma W-Y and Zhang H-J (2004). Learning an imaganifold for retrieval. In Proc ACM
Multimedia, pages 17-23

Heesch D (2005). The NNdea for image searching and browsing. PhD Thésiserial College
London

Heesch D, Pickering M, Yavlinsky A and Ruger S @0%/ideo retrieval within a browsing
framework using keyframes. In Proc TREC Video Retl Evaluation (TRECVID)

Heesch D and Ruger S (2002). Combining featuresdotent-based sketch retrieval - a
comparative evaluation of retrieval performancePtac European Conf Information Retrieval,
pages 42-51. LNCS 2291, Springer

Heesch D and Ruger S (2003). Performance boosithghvee mouse clicks - relevance feedback
for CBIR. In Proc European Conference on Inforntrafketrieval, pages 363-376. LNCS 2633,
Springer

Heesch D and Riiger S (2004). \INetworks for content-based image retrieval. Indaropean
Conf Information Retrieval, pages 253-266. LNCS299pringer

Heesch D and Riiger S (2005). Image browsing: A sémanalysis of NK Networks. In Proc Intl
Confon Image and Video retrieval, pages 609-6 N&CE 3568, Springer

Hong P, Tian Q and Huang T (2000). Incorporate stpgector machines to content-based image
retrieval with relevant feedback. In Proc IEEEII@®Nf Image Processing

Ishikawa Y, Subramanya R and Faloutsos C (1998)dkiader: querying databases through
multiple examples. In Proc Very Large Data BasesfJuages 433-438

Jing F, Li M, Zhang L, Zhang H-J and Zhang B (20Q®arning in region-based image retrieval. In
Proc IEEE Int'l Symp Circuits and Systems



Kim D-H and Chung C-W (2003). Qcluster: relevaneedback using adaptive clustering for
content-based image retrieval. In Proc ACM SIGM®@E Conf Management of Data, pages 599—
610

Kohonen T (2001). Self-organizing maps. SpringereSan Information Sciences (Volume 30).

Kruskal J (1964). Multi-dimensional scaling by opizing goodness-of-fit to a nonmetric
hypothesis. Psychometrika, 29:1-27

Lavrenko V, Manmatha R and Jeon J (2003). A mamidkiarning the semantics of pictures. In Int'l
Conf Neural Information Processing Systems

Lim J, Wu J, Singh S and Narasimhalu D (2001). beay similarity matching in multimedia
content-based retrieval. IEEE Trans Knowledge aath[Engineering, 13(5):846-850

Meilhac C and Nastar C (1999). Relevance feedbadlcategory search in image databases. In
Proc Int'l Conf on Multimedia Communications Systermages 512-517

Mueller H, Marchand-Maillet S and Pun T (2002). Theh about Corel - evaluation in image
retrieval. In Proc Int'l Conf on Image and VideotReval, pages 38-49. LNCS 2383, Springer

Mueller H, Mueller W, Squire D, Marchand-Maillett®d Pun T (2000). Strategies for positive and
negative relevance feedback in image retrievaPrbc Int'l Conf Pattern Recognition

Nastar C, Mitschke M and Meilhac C (1998). Effidigunery refinement for image retrieval. In
IEEE Conf Computer Vision and Pattern Recognition

Pecenovic Z, Do M, Vetterli M and Pu P (2000). greged Browsing and Searching of Large
Image Collections. In Proc Int'l Conf Advances istal Information Systems, pages 279-289.
LNCS 1929, Springer.

Peng J, Bhanu B and Qing S (1999). Probabilistituie relevance learning for content-based
image retrieval. Computer Vision and Image Undaditeg, 75(12):150-164

Porkaew K, Chakrabarti K and Mehrotra S (1999). Quefinement for multimedia similarity
retrieval in Mars. In Proc 7th ACM Int'l Conf Muttiedia, pages 235-238

Rocchio J (1971). The SMART Retrieval System. Expents in Automatic Document Processing.
Prentice Hall

Rubner Y, Guibas L and Tomasi C (1997). The eandkiaris distance, multi-dimensional scaling,
and color-based image retrieval. In DARPA Image émsthnding Workshop

Rui Y and Huang T (2000). Optimizing learning inaige retrieval. In Proc IEEE Conf on
Computer Vision and Pattern Recognition

Rui Y and Huang T and Mehrotra S (1997). Contersedamage retrieval with relevance feedback



in Mars. In Proc IEEE Int'l Conf on Image Procegsin

Rui Y, Huang T, Ortega M and Mehrotra S (1998).eRkahce feedback: A power tool for
interactive content-based image retrieval. In IEE&NS Circuits and Video Technology

Salton G and McGill M (1982). Introduction to Moddnformation Retrieval. McGraw-Hill Book
Company

Santini S, Gupta A and Jain R (2001). Emergent séinsathrough interaction in image databases.
In IEEE Trans Knowledge and Data Engineering, 1383)-351

Santini S and Jain R (2000). Integrated browsirdgcqarerying for image databases. IEEE
MultiMedia, 7(3):26-39

Schettini R, Ciocca G and Gagliardi | (1999). Comeased color image retrieval with relevance
feedback. In Proc Int'l Conf Image Processing, dapa

Sclaroff S, Taycher L and La Cascia M (1997). Inragger: A content-based image browser for
the world wide web. In IEEE Int'l Workshop Contdrased Access of Image and Video Libraries

Tong S and Chang E (2001). Support vector machatieedlearning for image retrieval. In Proc
ACM Int'l Conf Multimedia, pages 107-118, New YoiNY, USA, ACM Press.

Urban J and Jose J (2004). Ego: A personalisedmadia management. In Proc ICMP

Urban J and Jose J (2004). Evidence combinatiomédti-point query learning in content-based
image retrieval

Urban J, Jose J and Rijsbergen K (2003). An adagpproach towards content-based image
retrieval. In Proc Int'l Workshop on Content-BagdédItimedia Indexing pages 119-126

Vapnik V (1995). The Nature of Statistical Learniflgeory. Springer

Vasconcelos N and Lippman A (2000). Bayesian relegdeedback for content-based image
retrieval. In IEEE workshop on Content-Based Acaddsage and Video Libraries, South
Carolina, page 63

Watts D and Strogatz S (1998). Collective dynarofcemall-world networks. Nature 393:440-442
Wolfram S (2004). A new kind of science. WolfrandLt

Wu L, Faloutsos C, Sycara K and Payne T (2000xdralFeedback adaptive loop for content-
based retrieval. In Proc Conf Very Large Data Bagages 297-306

Wu P and Manjunath B (2001). Adaptive nearest rimgh search for relevance feedback in large
image databases. In Proc ACM Multimedia, pages89-9



Yang C (2004). Content-based image retrieval: apaoison between query by example and image
browsing map approaches. Journal of InformatioeBm®. 30:3, pages 254-267.

Yavlinsky A, Schofield E and Ruger S (200Butomated Image Annotation Using Global Features
and Robust Nonparametric Density Estimation. @'hf on Image and Video Retrieval, pages
507-517, Springer LNCS 3568

Yeung M and Liu B (1995). Efficient matching andstering of video shots. In Proc IEEE Int'l
Conf Image Processing, pages 338-341

Yeung M and Yeo B (1997). Video visualization fengpact presentation and fast browsing of
pictorial content. IEEE Trans Circuits and Systdons/ideo Technology, 7:771-785

Yoon J and Jayant M (2001). Relevance feedbackdorantics based image retrieval. In Proc Int'l
Conf Image Processing, pages 42-45

Zhang H and Zhong D (1995). A scheme for visuaiuieabased image indexing. In Proc
SPIE/IS&T Conf Storage and Retrieval for Image ®dko Databases lll, volume 2420, pages 36-
46

Zhang H-J and Su Z (2001). Improving CBIR by senecgmiopagation and cross modality query
expansion. In Proc Multimedia Content-based Indgxind Retrieval, pages 79-82

Zhang R, Zhang Z, Li M, Ma W-Y and Zhang H-J (2Q05probabilistic semantic model for
image annotation and multi-modal image retrievaPtoc Int'l Conf Computer Vision

Zhou X and Huang T (2001). Relevance feedback agmretrieval: a comprehensive review.
ACM Multimedia Systems



