

内側人工膝関節単顆置換術後の再手術に関する全国規模のリアルワールドデータ解析 手術施行率の高い国から得た知見

Analysis of national real-world data on reoperations after medial unicompartmental knee arthroplasty

insights from a high-usage country

By C. Bredgaard Jensen, MD*, M. Lindberg-Larsen, MD, PhD, A. Kappel, MD, PhD, C. Henkel, MD, PhD, T. Mark-Christensen, Msc Physiotherapy, PhD, K. Gromov, MD, PhD, and A. Troelsen, MD, PhD, DMsc

Aims:

The aim of this study was to examine the indications for further surgery and the characteristics of the patients within one year of medial unicompartmental knee arthroplasty (mUKA), providing an assessment of everyday clinical practice and outcomes in a high-volume country.

Methods:

All mUKAs which were performed between 1 April 2020 and 31 March 2021 and underwent further surgery within one year, from the Danish Knee Arthroplasty Registry (DKAR), were included. For primary procedures and reoperations, we received data on the characteristics of the patients, the indications for surgery, the type of procedure, and the sizes of the components individually, from each Danish private and public arthroplasty centre. All subsequent reoperations were recorded regardless of the time since the initial procedure.

Results:

A total of 2,431 primary mUKAs in 2,303 patients were reported to the DKAR during the study period and 55 patients (55 mUKAs; 2.3% (95% CI 1.7 to 3.0)) underwent further surgery within one year. The most frequent indications for reoperation were periprosthetic fracture (n = 16; 0.7% (95% CI 0.4 to 1.1)), periprosthetic joint infection (PJI)(n = 13; 0.5% (95% CI 0.3 to 0.9)), and bearing dislocation (n = 9; 0.4% (95% CI 0.2 to 0.7)). Six periprosthetic fractures were treated with internal fixation, but five of these patients later underwent revision to a total knee arthroplasty (TKA). Ten PJIs were treated with debridement, antibiotics, and implant retention (DAIR). Due to persistent infection, four of these patients later underwent revision to a TKA. All nine bearing dislocations were treated with exchange of the liner, and seven occurred in patients who, based on their sex and height, probably had undersized femoral components.

Conclusion:

Reoperations are rare following mUKA in a high-volume country. The most frequent indications for further surgery were periprosthetic fracture, PJI, and bearing dislocation. Using internal fixation to treat periprosthetic fractures after mUKA gives poor results. Whether DAIR is an appropriate form of treatment for PJI in mUKAs, and how to ensure the effective eradication of infection in these patients, remains uncertain. Undersizing the femoral component might increase the risk of bearing dislocation.

日 的

本研究の目的は、内側人工膝関節単顆置換術(mUKA)後1年以内に追加手術が施行された場合の、その適応症および患者特性を調査し、手術件数の多い国における、日々の臨床診療とアウトカムを評価することである.

方 法:

Danish Knee Arthroplasty Registry (DKAR) に登録された、2020 年 4 月 1 日~2021 年 3 月 31 日に施行され、1 年以内に追加手術を要したすべての mUKA を対象とした。デンマークの私立および公立の各人工関節センターから、初回手術と再手術について、患者特性、手術の適応症、手術方法、患者別のコンポーネントのサイズに関するデータを入手した。初回手術からの期間を問わずすべての再手術を記録した。

結 里

研究期間中に患者 2,303 例における計 2,431 件の初回 mUKA が DKAR に報告され,55 例(mUKA 55 件,2.3% [95%信頼区間 | CI | 1.7~3.0])が 1 年以内に追加手術を受けた. 再手術の適応症でとくに多かったのは,人工関節周囲骨折(16 例,0.7% [95% CI 0.4~1.1]),人工関節周囲感染(PJI) (13 例,0.5% [95% CI 0.3~0.9]),ベアリング脱臼(9 例,0.4% [95% CI 0.2~0.7])であった.6 例の人工関節周囲骨折は内固定術により治療されたが,うち 5 例はその後人工膝関節全置換術(TKA)への再置換を受けた.10 例の PJI は、debridement、antibiotics、and implant retention (DAIR)法により治療された.うち 4 例は感染が持続したため、その後 TKA への再置換を受けた.9 件のベアリング脱臼はすべてライナーの交換により治療されたが、うち 7 件は、性別と身長からみると、大腿骨コンポーネントのサイズが小さかった患者で発生した可能性が高い.

結 論

手術件数の多い国では、mUKA 後の再手術はまれである. 追加手術の適応症でもっとも多かったのは、人工関節周囲骨折、PJI、ベアリング脱臼であった. mUKA 後の人工関節周囲骨折に対する内固定術の治療成績は不良である. mUKA におけるPJI の治療法として DAIR が適切かどうか、またこれらの患者で感染を確実かつ効果的に根絶する方法についてはいまだに確定していない. 大腿骨コンポーネントのサイズが小さい場合、ベアリング脱臼のリスクが増大する可能性がある.

*Department of Orthopaedic Surgery, Clinical Orthopaedic Research Hvidovre, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark. E-mail: christian.bredgaard.jensen@regionh.dk

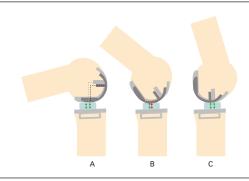


Fig. 2

Figure showing the impact of undersizing the femoral component. a) Two femoral components, one undersized (dark grey) and one optimally sized (light grey), implanted with balanced flexion gaps, illustrated by dotted lines. b) Due to the smaller diameter of the curve of the undersized component, the gap becomes tighter during mid-flexion. The red dotted line shows the contour of the optimally sized component and the protrusion of the undersized component beyond it. c) The two components implanted with balanced extension gaps.