

人工膝関節全置換術における術前と術後の Coronal Plane Alignment of the Knee 分類と, その分類が臨床アウトカムに及ぼす影響

Pre- and postoperative Coronal Plane Alignment of the Knee classification and its impact on clinical outcomes in total knee arthroplasty

By T. Konishi, MD*, S. Hamai, MD, PhD**, H. Tsushima, MD, PhD, S. Kawahara, MD, PhD, Y. Akasaki, MD, PhD, S. Yamate, MD, S. Ayukawa, MD, and Y. Nakashima, MD, PhD

Aims:

The Coronal Plane Alignment of the Knee (CPAK) classification has been developed to predict individual variations in inherent knee alignment. The impact of preoperative and postoperative CPAK classification phenotype on the postoperative clinical outcomes of total knee arthroplasty (TKA) remains elusive. This study aimed to examine the effect of postoperative CPAK classification phenotypes (I to IX), and their pre- to postoperative changes on patient-reported outcome measures (PROMs).

Methods:

A questionnaire was administered to 340 patients (422 knees) who underwent primary TKA for osteoarthritis (OA) between September 2013 and June 2019. A total of 231 patients (284 knees) responded. The Knee Society Score 2011 (KSS 2011), Knee injury and Osteoarthritis Outcome Score-12 (KOOS-12), and Forgotten Joint Score-12 (FJS-12) were used to assess clinical outcomes. Using preoperative and postoperative anteroposterior full-leg radiographs, the arithmetic hip-knee-ankle angle (aHKA) and joint line obliquity (JLO) were calculated and classified based on the CPAK classification. To investigate the impact on PROMs, multivariable regression analyses using stepwise selection were conducted, considering factors such as age at surgery, time since surgery, BMI, sex, implant use, postoperative aHKA classification, JLO classification, and changes in aHKA and JLO classifications from preoperative to postoperative.

Results:

The preoperative and postoperative CPAK classifications were predominantly phenotype I (155 knees; 55%) and phenotype V (73 knees; 26%), respectively. The change in the preoperative to postoperative aHKA classification was a significant negative predictive factor for KOOS-12 and FJS-12, while postoperative apex proximal JLO was a significant negative predictive factor for KSS 2011 and KOOS-12.

Conclusion:

In primary TKA for OA, preoperative and postoperative CPAK phenotypes were associated with PROMs. Alteration in varus/valgus alignment from preoperative to postoperative was recognized as a negative predictive factor for both KOOS-12 and FJS-12. Moreover, the postoperative apex proximal JLO was identified as a negative factor for KSS 2011 and KOOS-12. Determining the target alignment for each preoperative phenotype with reproducibility could improve PROMs.

目 的:

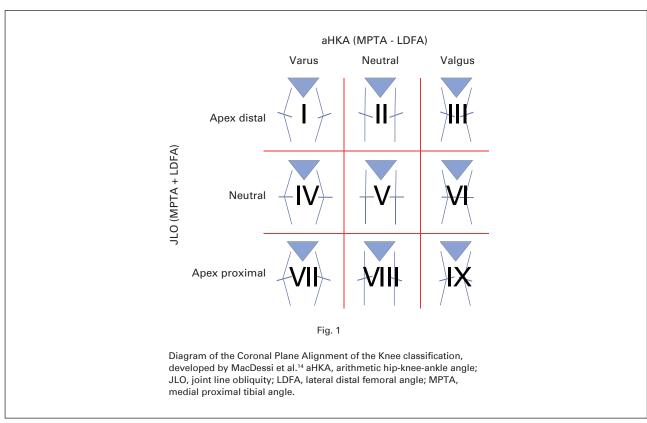
Coronal Plane Alignment of the Knee (CPAK) 分類は,膝関節アライメントにおける固有の個人差を予測するために開発された.人工膝関節全置換術 (TKA) の術前と術後における CPAK 分類 phenotype が術後の臨床アウトカムに及ぼす影響は依然として不明である.本研究の目的は,術後の CPAK 分類 phenotype (IIX) ならびにその術前から術後の変化が,患者報告アウトカム尺度 (PROM) に及ぼす影響を検討することである.

方 法:

2013 年 9 月~2019 年 6 月に変形性関節症(OA)に対して初回TKA を施行した 340 例(422 膝)に質問票を送付した. 計 231 例(284 膝)が回答した. 臨床アウトカムの評価には, Knee Society Score 2011(KSS 2011), Knee injury and Osteoarthritis Outcome Score-12(KOOS-12), Forgotten Joint Score-12(FJS-12)を使用した. 術前と術後の全下肢前後 X 線像を用いて, arithmetic hip-knee-ankle angle(aHKA), joint line obliquity(JLO)を算出し, CPAK 分類に基づき分類した. PROM への影響を検討するために, 手術時の年齢, 術後の経過期間, BMI, 性別, インプラント使用, 術後の aHKA 分類, JLO 分類, aHKA 分類および JLO 分類の術前後の変化などの因子を考慮し, ステップワイズ選択法を用いた多変量回帰分析を実施した.

結果:

術前は主に CPAK 分類 phenotype I(155 膝, 55%), 術後は CPAK 分類 phenotype V(73 膝, 26%)であった。aHKA 分類 が術前と術後で変化していることは, KOOS-12 および FJS-12 の有意な負の予測因子であり, 術後に JLO が apex proximal であることは, KSS 2011 および KOOS-12 の有意な負の予測因子であった [多変量回帰分析]. [Mann-Whitney U 検定]


結 論:

OA に対する初回 TKA において、術前と術後の CPAK 分類 phenotype は PROM と関連した、術前と術後の内反/外反アライメントの変化は、KOOS-12 および FJS-12 両方の負の予測因子であることが確認された。さらに、術後に JLO が apex proximal であることは、KSS 2011 および KOOS-12 の負の因子であった。術前の各 phenotype に対する目標アライメントを再現性をもって決定することで、PROM が改善する可能性がある。

Sciences, Kyushu University, Fukuoka, Japan. ** E-mail: hamai.satoshi.075@m.kyushu-u.ac.jp

^{*} Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan

Reproduced with permission and copyright of The British Editorial Society of Bone and Joint Surgery [Bone Joint J 2024;106-B:1060]