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ReFrame: A Process for 
Finding and Executing 
Reinforcement Learning 
Projects

Dr. Phil Winder, CEO
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Reinforcement Learning Recap

Environment

Agent (e.g. rules)

RewardObservationAction

Agent

ML

RL

For one Episode

https://covariant.ai/

http://www.youtube.com/watch?v=ApiQwHlxdmA
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What is an RL Problem?

● Sequential – iterative
● Strategic – course-corrections
● Long-term rewards
● Actions affect the future
● Actions affect the reward
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What Are You Looking For?

● An entity performing an action: a person, a PID controller, 
an advanced process control system

● An environment: a well-bounded context
● A clean interface between the entity and the environment: 

an API, a lever, a button
● An environment that changes state: affected by the entity
● An action being performed by the entity: rules of thumb, gut 

feeling, experience, like riding a bike
● Some kind of success or failure: profit, KPIs, optimal 

temperatures, likes
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But What If?

● Episode is 1 step, labelled data
○ Supervised machine learning

● Episode is 1 step, no data
○ One-state Markov chain - Multi-Arm Bandits

● Cannot affect environment & fully observable
○ Markov Chain - Use Monte Carlo techniques

● Cannot affect environment & NOT fully observable
○ Non-Markovian - Hidden Markov Models

Remember:

● Multi-step, long-term rewards, agent affects environment & outcome
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The Process

1. Environment engineering
2. State observation engineering
3. Policy engineering
4. Reward engineering
5. Deployment
6. Repeat
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Environment Engineering - i.e. Simulation

● Most profitable first step
○ EDA enhances understanding
○ Quickly find potential issues with RL solution
○ Can use random agents to explore environment, prove that it works

● Where do environments come from?
○ Physical models / Simulations

■ Augmented versions of
○ Data-driven models

■ Statistical approximations
■ Model-based Approximations

○ Generative models
○ Real-life
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State/Observation Engineering

● NOT feature engineering (i.e. not creating simpler features)
● NOT policy engineering
● Better representations of the state

○ Which may include feature engineering :-)
● Domain expertise is paramount

○ E.g. robot gripper - camera vs “height of gripper”
● How?

○ Learn a forward model - lab experiments
○ Apply constraints, smaller state spaces are faster to learn
○ Dimensionality reduction (to reduce the state space)
○ Experimentation
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Policy Engineering - Observations

● Observations and actions need conversion
● Observations:

○ Discrete states are easier to solve - no “in-between” states
○ Continuous states harder to solve - infinite real values - no convergence guarantee

■ I.e. models must approximate - i.e. you need an ml algorithm
● Discretisation

○ Binning, tile coding, hashing, 
classification, 
unsupervised methods, etc.
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Policy Engineering - Actions

● Observations and actions need conversion
● Actions:

○ Binary - easy to work with
○ Continuous - often modelled as a random variable to aid exploration
○ No action - options framework
○ Ranked options 

● Recommendations
○ Lots of diversity in 

Implementation
○ Many algorithms expect 

a certain type of data
○ Try to stick to one type
○ At least start with something

simple
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Policy Engineering - Exploration
● Lots of diversity in implementation

○ Stick with something simple to begin with
■ E.g. epsilon greedy, or whatever the algo utilises, e.g. entropy

● Kids - depth first, then transfer
○ RL - stumbling

● More advanced:
○ Info gain (surprise) - E.g. use of entropy in SAC
○ State prediction (self-reflection)
○ Random distillation (novelty)
○ Episodic curiosity 

(distance to novelty)
○ Curriculum learning - (teaching)
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Reward Engineering
● Match the business problem
● Proxy rewards correlate with the 

business problem
● Are Not noisy
● Include non-functional requirements
● Are provided quickly
● Avoid plateaus
● Smooth
● Fast to 

compute

● Most of all - Are simple
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Reward Engineering - Common Reward Types

● Sparse rewards
● Distance to goal
● Punishing steps
● Punishing damaging or dangerous behaviour
● Goal states - e.g. targets, images
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Summary

● Multi-step, long-term rewards, agent affects environment & outcome
● Simulations are useful
● Lots of engineering still to be done
● Rewards are hard

● Next time: Key challenges to watch out for!
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https://Winder.AI/events/
phil@winder.ai
DrPhilWinder

mailto:phil@winder.ai
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Challenges
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Last Event Recap

● Multi-step, long-term rewards, agent affects environment & outcome
● Simulations are useful
● Lots of engineering still to be done
● Rewards are hard
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Challenge 1: Framing the Problem

● Imagine yourself trying to solve it? How would you learn? What’s missing?
● Simplify the task as much as possible, then keep iterating.
● Is there a hierarchy to the problem? Could you split it up
● Think about history, do you need to remember what you did? If yes, can you think 

of actions that removes the need for having history?
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Challenge 2: The Environment

● Often hard to develop in “real life” - develop a simulator
● Easy to over-complicate simulators
● Develop multiple simulators 

○ With varying degrees of difficulty
○ Stressing different problems within the environment
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Challenge 2: Rewards

● Scale - super important, especially when you have competing concerns
● Clipping - try to avoid throwing away info
● Complex “models” or transformations of reward
● Using known models - e.g. robot must stand
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Challenge 3: Training & Development

● Start simple
● Create baseline agents

○ Random
○ Fixed pick a single action (e.g. most popular)
○ Simpler RL algorithms like  MCMC or Cross Entropy Method

● Create regression tests
○ Develop regression tests for situations where “it must get it right”

● Beware of long training durations
● Keep track of your experiments
● Randomness - averaging, seeds, stability, etc.
● Sensitivity to hyper parameters
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Challenge 4: Evaluation

● Be careful, visualise
● Algorithmic performance improvements aren’t everything
● Many sources of stochasticity
● Which leads to potentially damaging outliers
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Challenge 5: Deployment

● Deployment options are immature - expect a lot of engineering
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Challenge 6: Debugging

● Debugging is hard - 
○ one study showed that code-level optimizations improved performance more than the 

choice of algo
○ Another showed how a single line bug (zeroing an array) caused oscillation in the value 

estimates
● Standard software engineering debugging techniques are useful
● Monitoring training metrics, evaluation provide the ability to experiment
● If in doubt, start with something simpler
● Most modern “state-of-the-art” algos

are hardware optimisations
● Apps “fail” because the problem isn’t

suited to RL
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Summary

● Many challenges!
● KISS - Iterate, don’t jump
● Simulations help ease development pain, even if they’re not perfect
●
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