
Highways England
Support Goods Vehicle Incident Prevention – Diesel Spillages (DS2)

Business Case, Implementation Plan and Lessons Learnt Report

Highways England
Quality information

<table>
<thead>
<tr>
<th>Document name</th>
<th>Ref</th>
<th>Prepared for</th>
<th>Prepared by</th>
<th>Date</th>
<th>Reviewed by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incident Prevention</td>
<td>60513940</td>
<td>John Walford / Amanda Mushing</td>
<td>James Nankivell</td>
<td>05/04/17</td>
<td>Geoff Clarke</td>
</tr>
</tbody>
</table>

Revision history

<table>
<thead>
<tr>
<th>Revision</th>
<th>Revision date</th>
<th>Details</th>
<th>Name</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Draft</td>
<td>05/04/17</td>
<td>Draft report</td>
<td>James Nankivell</td>
<td>Senior Consultant</td>
</tr>
<tr>
<td>2nd Draft</td>
<td>26/05/17</td>
<td>Final Draft</td>
<td>James Nankivell</td>
<td>Senior Consultant</td>
</tr>
</tbody>
</table>

This document has been prepared by AECOM Limited for the sole use of our client (DfT) and in accordance with generally accepted consultancy principles, the budget for fees and the terms of reference agreed between AECOM Limited and the Client. Any information provided by third parties and referred to herein has not been checked or verified by AECOM Limited, unless otherwise expressly stated in the document. No third party may rely upon this document without the prior and express written agreement of AECOM Limited.
Contents
Executive Summary .. 3
1. Introduction ... 8
2. Key Findings and Recommendations .. 10
3. Lessons Learnt Evaluation ... 14
4. Implementation Plan .. 18
5. Diesel Spillages Business Case .. 22
Glossary of Terms

<table>
<thead>
<tr>
<th>Term(s)</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCR</td>
<td>An acronym for ‘Benefit Cost Ratio’.</td>
</tr>
<tr>
<td>CVIPT</td>
<td>An acronym for ‘The Commercial Vehicle Incident Prevention Team’.</td>
</tr>
<tr>
<td>DfT</td>
<td>An acronym for ‘Department for Transport’.</td>
</tr>
<tr>
<td>DVSA</td>
<td>An acronym for ‘Driving and Vehicle Standards Agency’.</td>
</tr>
<tr>
<td>Fleet operator</td>
<td>An economic entity which operates a vehicle fleet.</td>
</tr>
<tr>
<td>FORS</td>
<td>An acronym for ‘Fleet Operator Recognition Scheme’.</td>
</tr>
<tr>
<td>FTA</td>
<td>An acronym for ‘Freight Transport Association’.</td>
</tr>
<tr>
<td>Fuel Safe</td>
<td>A diesel / oil spill dissolver liquid used to remove fuel spills and residues which can help prevent asphalt degradation and the necessity for resurfacing operations</td>
</tr>
<tr>
<td>Gross Vehicle Weight (GVW)</td>
<td>The maximum weight of a vehicle inclusive of the vehicle, load, fuel, driver and accessories.</td>
</tr>
<tr>
<td>Heavy Goods Vehicle (HGV)</td>
<td>Goods vehicles over 3.5 tonnes GVW.</td>
</tr>
<tr>
<td>Key Performance Indicators (KPIs)</td>
<td>A measurable value that demonstrates how effectively a company is achieving key business objectives.</td>
</tr>
<tr>
<td>KSI</td>
<td>An acronym for ‘Killed or Seriously Injured’.</td>
</tr>
<tr>
<td>NPV</td>
<td>An acronym for ‘Net Present Value’.</td>
</tr>
<tr>
<td>PVB</td>
<td>An acronym for ‘Present Value of Benefits’.</td>
</tr>
<tr>
<td>PVC</td>
<td>An acronym for ‘Present Value of Costs’.</td>
</tr>
<tr>
<td>RHA</td>
<td>An acronym for ‘Road Haulage Association’.</td>
</tr>
<tr>
<td>SES</td>
<td>An acronym for the ‘Safety, Engineering and Standards’ team</td>
</tr>
<tr>
<td>Sphag Sorb</td>
<td>A peat based absorbent organic compound that is used to clean up oil, gas, diesel fuel, solvents, paints, glycol and organic chemical spills</td>
</tr>
<tr>
<td>Spill Dry</td>
<td>Absorbent granules used to clean up oil and diesel spills</td>
</tr>
<tr>
<td>SRN</td>
<td>An acronym for ‘Strategic Road Network’.</td>
</tr>
<tr>
<td>TO</td>
<td>An acronym for ‘Highways England Traffic Officer’.</td>
</tr>
</tbody>
</table>
Executive Summary
Executive Summary

AECOM and our project partners PA Consulting and Road Safety Support (RSS) were commissioned by Highways England (HE) to explore a number of options for reducing the frequency and severity of incidents involving Heavy Goods Vehicles (HGV) on the Strategic Road Network (SRN) which HE are responsible for. During the initial research investigation, a number of issues were discovered as follows:

- Diesel spills account for approximately 25% of all incident related congestion on the SRN[1]
- During 2013, 78% of fuel spillages on the SRN were diesel spills[2]
- 67% of vehicles involved in diesel related incidents are HGVs[3]
- In 2015, 4.8% of UK HGV traffic was estimated to be foreign registered[4]. One in three collisions (33.1%) involving foreign lorries are on the motorway. This is nearly eight times higher than the national average[5]
- Of the total 6,873 accidents recorded involving HGVs, 495 (7%) involved left-hand drive vehicles[6]
- According to command and control data there were 263 diesel spillage incidents in 2013 which rose to 357 in 2014[7] (one a day on average)
- Approximately 41% of incidents are estimated to be 2 hours or less, 14% of incidents are between two to five hours and 22% of incidents are greater than five hours[8] (please note there was no record of the other 23%)
- According to Atkins’ business case report the cost of an incident lasting for 4 hours on a busy route is £541,440[9]
- The Incident Prevention Teams (IPT) presentation delivered by Highways England contained two case studies. The first detailed the overall cost passed onto the operator was £58,760 and the second detailed an overall cost of £69,908[10]
- Of the survey respondents consulted during the stakeholder phase of this project, 42% said they did not equip their vehicles with a spill kit[11]
- Diesel exposure for as little as 120 minutes has been shown to result in structural damage to road surfaces[12]

• Many operators who have not been involved in a diesel spillage incident in the past are not fully aware of the cost/damage associated with diesel spills and as such may not be investing in diesel spillage protection

• The review of diesel spill clean-up procedures conducted by TRL mentions that there are a range of products used by different areas\(^{[13]}\)

• The site visit to Perry Barr (Kier) in area 9 revealed that they were using two products namely; Fuel Safe and Sphag-Sorb

• Highways England reported that area 7 were using four different products including Spill Dry

• Area 10 and 13 were found to be using just one product which is Sphag-Sorb

Detailed within this report is the implementation plan and business case for the diesel spillage intervention – DS2. A number of key findings have been drawn from these pieces of work and a recommended option is proposed for Highways England to consider moving forward with.

An evaluation of the lessons learnt is also provided as is a priority list (by Benefit Cost Ratio (BCR)) for all of the interventions from each of the three workstreams (e.g. diesel spillages, tyre management and drivers’ hours).

Agreed interventions and timescale for implementation

Of the suggested interventions that were proposed within the Diesel Spillage initial intervention report, the Safety, Engineering and Standards (SES) team has decided to move forward with the following recommendation:

<table>
<thead>
<tr>
<th>Ref</th>
<th>Group</th>
<th>Proposed Approach</th>
<th>Timescale</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS2</td>
<td>To be delivered by SES</td>
<td>Identify the most effective product(s) for treating diesel spills through trialling and train traffic officers in their use</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Compile list of all treatment types being used in all traffic areas</td>
<td>Short (3 Months)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conduct testing to establish the best set of products for Traffic officers to carry in their vehicles</td>
<td>Short (3 Months)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pilot best product(s) (such as Fuel Safe) in other traffic areas and obtain feedback on performance</td>
<td>Short (3-6 Months)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If trials successful, roll out product(s) nationally to all areas</td>
<td>Medium (1-2 Years)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Encourage operators to carry spill kits (such as fuel safe) especially if they have been involved in a diesel spillage incident in the past</td>
<td>Medium (Ongoing with TO contact with driver/operators)</td>
</tr>
</tbody>
</table>

\(^{[13]}\) TRL. 2010: Review of Diesel Spillage Clean-up Procedures. pp 7
Results from the Business Case

Sensitivity analysis

<table>
<thead>
<tr>
<th>Evaluation Results based on 2016 discounted rates</th>
<th>Option 1 Do Nothing</th>
<th>Option 2 DS1 Develop diesel spillage guidance / raise awareness of best practice procedure</th>
<th>Option 3 DS2 Identify most effective product(s) for treating diesel spills</th>
<th>Option 4 Combined approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value Benefits (PVB) - Safety benefits only</td>
<td>As is</td>
<td>£434,445</td>
<td>£203,029</td>
<td>£637,475</td>
</tr>
<tr>
<td>Value Cost (PVC)</td>
<td>As is</td>
<td>£83,839</td>
<td>£83,833</td>
<td>£167,672</td>
</tr>
<tr>
<td>Net Present Value (NPV)</td>
<td>As is</td>
<td>£350,606</td>
<td>£119,196</td>
<td>£469,802</td>
</tr>
<tr>
<td>Benefit Cost Ratio (BCR)</td>
<td>0</td>
<td>5.2</td>
<td>2.4</td>
<td>3.8</td>
</tr>
<tr>
<td>Ranking</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Recommended Option

The recommendation is Option 4, to deliver a best practice user guide to be distributed to selected drivers and operators, including overseas users. In addition, the user guide can be distributed as part of a campaign at trade fairs and through trade bodies. Furthermore, to target a wider audience the use of a web hosting service would be essential.

This will be supported by a study to identify the best diesel spillage products that can then be used by the Highways England teams on the ground. The products would also be recommended to drivers/operators who have been involved in a diesel spillage incident on the SRN and are known to Highways England.

The impact and potential benefits of Option 4 (combining Options 2 and 3) is believed to better achieve the desired strategic outcomes that both the Commercial Vehicle Incident Prevention Team (CVIPT) and Safety, Engineering and Standards Team (SES) hopes to achieve and therefore Option 4 is the recommended option to be taken forward. It has been agreed with Highways England that although the combined approach has been chosen this will be delivered separately as follows:

- **DS1** will be delivered by the CVIP team - The cost to implement DS1 is £83,839.
- **DS2** will be delivered by the SES team as part of the Incident Timeline work due to be procured shortly. The cost to implement DS2 is £83,833.

The overall cost of implementing Option 4 (DS1 and DS2) will be £167,672.
Priority List of Interventions

The following table presents all of the agreed interventions for each of the three workstreams (e.g. Diesel spills, tyre management and drivers’ hours) and puts these in order of priority by Benefit Cost Ratio (BCR) number.

<table>
<thead>
<tr>
<th>Order of Priority</th>
<th>Ref</th>
<th>Intervention Name</th>
<th>BCR Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DH2</td>
<td>Enhanced Police Enforcement Pilot</td>
<td>7.8</td>
</tr>
<tr>
<td>2</td>
<td>DH1</td>
<td>Best Practice Guides / Awareness Campaigns</td>
<td>5.3</td>
</tr>
<tr>
<td>3</td>
<td>DS1</td>
<td>Develop diesel spillage guidance for operators and raise awareness of best practice procedure</td>
<td>5.2</td>
</tr>
<tr>
<td>4</td>
<td>TM2</td>
<td>Continue roll-out of tyre checking facilities</td>
<td>5.0</td>
</tr>
<tr>
<td>5</td>
<td>DS2</td>
<td>Identify most effective product(s) for treating diesel spills through trialling and train traffic officers in their use</td>
<td>2.4</td>
</tr>
<tr>
<td>6</td>
<td>TM1</td>
<td>Debris management</td>
<td>1.4</td>
</tr>
</tbody>
</table>
Introduction
1. Introduction

Background

The Strategic Road Network (SRN) whilst only constituting 2.4% of England’s road network, carries 67% of freight traffic and incidents on the SRN have a significant and disproportionate effect in terms of network disruption and severity of Personal Injury Collisions (PIC). Reducing the frequency and impact of commercial vehicle incidents is therefore vitally important in helping Highways England deliver a more free-flowing network to support economic growth and drive forward plans to deliver a safer road network.

The CVIP team identified through previous work, pilots and monitors Commercial Vehicle data, a number of interventions which were believed to have a significant and protracted impact on the SRN. These have been further developed by AECOM and presented to Highways England in the Initial Goods Vehicle Incident Prevention Intervention reports which covered the areas of tyre management, diesel spillages and drivers’ hours.

As part of the ongoing support AECOM has been asked to produce detailed and comprehensive business cases, implementation plans and a lessons learnt evaluation report. This can be used by Highways England to help lower the number of casualties, killed or seriously injured (KSI) on the SRN, as well as reduce disruption to the network by restoring it to normality at the earliest opportunity.

Methodology

The approach used to undertake this piece of work comprised of three phases as follows:

1. **Phase 1** – Production of business case (the full business case is included in Section 5)

 AECOM has worked alongside PA Consulting to produce business cases for each of the three workstreams (Diesel spillages, tyre management, and drivers' hours).

 Each business case has been based on the agreed proposals and recommendations following the initial intervention reports review meeting. They provide justification for the financial investment for each intervention, the objectives, benefits, risks, costs and value for money and provide a recommendation on the viability of each project at each Stage.

2. **Phase 2** – Implementation plan (the full implementation plan is included in Section 4)

 A series of implementation plans for the proposals which Highways England wish to take forward have been produced. These plans communicate changes and proposals to both internal and external stakeholders and facilitate the transfer of knowledge developed for Highways England.

3. **Phase 3** – Lessons learnt evaluation (the lessons learnt evaluation is included in Section 3)

 An evaluation of the work areas has been conducted to contribute to lessons learnt which enable benefits realisation for Highways England.
Key Findings and Recommendations
2. Key Findings and Recommendations

A number of key findings and recommendations can be drawn from the diesel spillage business case and implementation plan.

Of the suggested interventions that were proposed within the Diesel Spillage initial intervention report, the SES team has decided to move forward with the following recommendation:

Agreed intervention and timescale for implementation

<table>
<thead>
<tr>
<th>Ref</th>
<th>Group</th>
<th>Proposed Approach</th>
<th>Timescale</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS2</td>
<td>Identify the most effective product(s) for treating diesel spills through trialling and train traffic officers in their use</td>
<td>Compile list of all treatment types being used in all traffic areas</td>
<td>Short (3 Months)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conduct testing to establish the best set of products for Traffic officers to carry in their vehicles</td>
<td>Short (3 Months)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pilot best product(s) (such as Fuel Safe) in other traffic areas and obtain feedback on performance</td>
<td>Short (3-6 Months)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If trials successful, roll out product(s) nationally to all areas</td>
<td>Medium (1-2 Years)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Encourage operators to carry spill kits (such as fuel safe) especially if they have been involved in a diesel spillage incident in the past</td>
<td>Medium (Ongoing with TO contact with driver/operators)</td>
</tr>
</tbody>
</table>
DS2 – Identify the most effective product(s) for treating diesel spills

Issue

A variety of products for treating diesel spillages are being used in different regions across England. Stakeholder consultation conducted as part of this study revealed that Area 9 were using two products namely; Fuel Safe and Sphag-Sorb and Area 7 were using four different products including Spill Dry. There is very little (if any) technical information concerning the performance of these treatment products. Some Traffic Officers are required to work in more than one region. If each region uses different products then these Traffic Officers will need to be trained to use every product they encounter as a result this adds additional cost to the model.

In addition there need to be consistency in the approach to treating diesel spillages. For instance issues may be encountered where a Traffic Officer has arrived at an incident and applied Sphag Sorb in the first instance and then the area service provider turns up to administer Fuel Safe as these two products cannot be used in conjunction with one another.

A large number of fleet operators do not equip their vehicles with a spill kit meaning if they are involved in a spillage it will remain untreated until a response unit arrives at the scene. Of the survey respondents consulted during the stakeholder phase of this project, 42% said they did not equip their vehicles with a spill kit\(^1\), and of the 58% that said they did, only 16 of the 22 respondents stated they carried granules.

Solution

Highways England should consider conducting a comprehensive trial of the different products used to determine which product is most effective at treating diesel spills in one area initially.

In order to do this a list of available products should be assembled through consultation with each of the area service contract providers. The identified products should then be tested and graded according to how they perform against a number of key criteria. Finally Traffic Officers should be trained to use the most effective products and these should be rolled out across the network.

Results from the Business Case

Sensitivity analysis

<table>
<thead>
<tr>
<th>Evaluation Results based on 2016 discounted rates</th>
<th>Option 1</th>
<th>Option 2</th>
<th>Option 3</th>
<th>Option 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do Nothing</td>
<td>DS1 Develop diesel spillage guidance / raise awareness of best practice procedure</td>
<td>DS2 Identify most effective product(s) for treating diesel spills</td>
<td>Combined approach</td>
<td></td>
</tr>
<tr>
<td>Value Benefits (PVB) - Safety benefits only</td>
<td>As is</td>
<td>£434,445</td>
<td>£203,029</td>
<td>£637,475</td>
</tr>
<tr>
<td>Value Cost (PVC)</td>
<td>As is</td>
<td>£83,839</td>
<td>£83,833</td>
<td>£167,672</td>
</tr>
<tr>
<td>Net Present Value (NPV)</td>
<td>As is</td>
<td>£350,606</td>
<td>£119,196</td>
<td>£469,802</td>
</tr>
<tr>
<td>Benefit Cost Ratio (BCR)</td>
<td>0</td>
<td>5.2</td>
<td>2.4</td>
<td>3.8</td>
</tr>
<tr>
<td>Ranking</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

The costs and assumptions attached to DS2 are provided in the table below:

\(^1\) AECOM analysis 2016
DS2 2017 Costs non-discounted

<table>
<thead>
<tr>
<th>Ser</th>
<th>Activity</th>
<th>Yr3 (17/18)</th>
<th>Yr 4 (18/19)</th>
<th>Yr5 (19/20)</th>
<th>Total</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
<td>(f)</td>
<td>(g)</td>
</tr>
<tr>
<td>1</td>
<td>Compile list of all treatments types</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Pilot sets in other traffic areas Conduct testing to establish best product set</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Research costs</td>
<td>£13,333</td>
<td>£0</td>
<td>£0</td>
<td>£13,333</td>
<td>Assesses 1/3 of the R&D costs allocated to GVI15 - Reduce Fuel Spills</td>
</tr>
<tr>
<td>1.2</td>
<td>Pilot costs</td>
<td>£10,000</td>
<td>£0</td>
<td>£0</td>
<td>£10,000</td>
<td>Assumes pilot undertaken over 3 months in all areas</td>
</tr>
<tr>
<td>1.3</td>
<td>Resources (incl T&S)</td>
<td>£5,000</td>
<td>£0</td>
<td>£0</td>
<td>£5,000</td>
<td>Costs involved working with selected agencies, and industry partners</td>
</tr>
<tr>
<td>2</td>
<td>Roll out costs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Purchase costs</td>
<td>£0</td>
<td>£0</td>
<td>£0</td>
<td>£0</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Distribution costs</td>
<td>£0</td>
<td>£0</td>
<td>£0</td>
<td>£0</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Training costs</td>
<td>£53,500</td>
<td>£0</td>
<td>£0</td>
<td>£53,500</td>
<td>Covers half a day batch training of 850 traffic officers and covers costs of trainer and expenses. TO pay approx £22,637 per yr. Approx 40 officers can be trained per week per area, cost of trainer per week approx £500</td>
</tr>
<tr>
<td>3</td>
<td>Incentivise operators to carry spill kits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Advertising</td>
<td>£0</td>
<td>£1,000</td>
<td>£1,000</td>
<td>£2,000</td>
<td>Medium term objective</td>
</tr>
</tbody>
</table>

Annual totals
- £81,833
- £1,000
- £1,000
- £83,833

The following benefits have been attached to DS2:

DS2 Benefits

<table>
<thead>
<tr>
<th>Ser</th>
<th>Previous Atkins Reference</th>
<th>Tranche Reference</th>
<th>Division</th>
<th>In progress</th>
<th>Reference</th>
<th>Yr3 (17/18)</th>
<th>Yr 4 (18/19)</th>
<th>Yr5 (19/20)</th>
<th>Total</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
<td>(f)</td>
<td>(g)</td>
<td>(h)</td>
<td>(i)</td>
<td>(j)</td>
<td>(k)</td>
</tr>
</tbody>
</table>

KSI Benefits

Directly attributable KSI benefits

<table>
<thead>
<tr>
<th>Ser</th>
<th>Reference</th>
<th>Division</th>
<th>In progress</th>
<th>Reference</th>
<th>Yr3 (17/18)</th>
<th>Yr 4 (18/19)</th>
<th>Yr5 (19/20)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RnD</td>
<td>3</td>
<td>CO</td>
<td>No</td>
<td>GVI15</td>
<td>£0</td>
<td>£0</td>
<td>£0</td>
</tr>
<tr>
<td>1.1</td>
<td>% benefits for this intervention =</td>
<td>80.0%</td>
<td>£0</td>
<td>£0</td>
<td>£0</td>
<td>£0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>% benefits allocated Total</td>
<td>£0</td>
<td>£0</td>
<td>£0</td>
<td>£0</td>
<td>£0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Delay Benefits as vehicle hour saving

Directly attributable delay benefits

<table>
<thead>
<tr>
<th>Ser</th>
<th>Reference</th>
<th>Division</th>
<th>In progress</th>
<th>Reference</th>
<th>Yr3 (17/18)</th>
<th>Yr 4 (18/19)</th>
<th>Yr5 (19/20)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RnD</td>
<td>3</td>
<td>CO</td>
<td>No</td>
<td>GVI15</td>
<td>£145,022</td>
<td>£0</td>
<td>£0</td>
</tr>
<tr>
<td>1.1</td>
<td>% benefits for this intervention =</td>
<td>80.0%</td>
<td>£116,017.30</td>
<td>£0</td>
<td>£0</td>
<td>£116,017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>% benefits allocated Total</td>
<td>£116,017</td>
<td>£0</td>
<td>£0</td>
<td>£116,017</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional Benefits

<table>
<thead>
<tr>
<th>Ser</th>
<th>Reference</th>
<th>Division</th>
<th>In progress</th>
<th>Reference</th>
<th>Yr3 (17/18)</th>
<th>Yr 4 (18/19)</th>
<th>Yr5 (19/20)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>TOS Support to DVSA</td>
<td>2</td>
<td>CO</td>
<td>Yes</td>
<td>GVI24</td>
<td>£25,000</td>
<td>£25,000</td>
<td>£25,000</td>
</tr>
<tr>
<td>13.1</td>
<td>% benefits for this intervention =</td>
<td>16.5%</td>
<td>£4,125</td>
<td>£4,125</td>
<td>£4,125</td>
<td>£12,375</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>% benefits allocated Total</td>
<td>£4,125</td>
<td>£4,125</td>
<td>£4,125</td>
<td>£12,375</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total % Benefit allocated
- £144,071
- £28,987
- £29,972
- £203,029
Recommended Option

The recommendation is Option 4, to deliver a best practice user guide to be distributed to selected drivers and operators, including overseas users. In addition, the user guide can be distributed as part of a campaign at trade fairs and through trade bodies. Furthermore, to target a wider audience the use of a web hosting service would be essential.

This will be supported by a study to identify the best diesel spillage products that can then be used by the Highways England teams on the ground. The products would also be recommended to drivers/operators who have been involved in a diesel spillage incident on the SRN and are known to Highways England.

The impact and potential benefits of Option 4 (combining Options 2 and 3) is believed to better achieve the desired strategic outcomes that both CVIP and SES teams hope to achieve and therefore Option 4 is the recommended option to be taken forward. It has been agreed with Highways England that although the combined approach has been chosen this will be delivered separately as follows:

- DS1 will be delivered by the team - The cost to implement DS1 is £83,839.
- DS2 will be delivered by the SES team as part of the Incident Timeline work due to be procured shortly. The cost to implement DS2 is £83,833.

The overall cost of implementing Option 4 (DS1 and DS2) will be £167,672.
Lessons Learnt Evaluation

03
3. Lessons Learnt Evaluation

In this section, we have conducted an evaluation of lessons learnt during the course of the project. This includes issues, which we discovered during the project and how these can be addressed, providing value to Highways England.

Section Content Summary

<table>
<thead>
<tr>
<th>Area</th>
<th>Sub-area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>• Management</td>
</tr>
<tr>
<td></td>
<td>• Sharing</td>
</tr>
<tr>
<td>Foreign Vehi-</td>
<td>• Enforcement</td>
</tr>
<tr>
<td>cles</td>
<td>• Knowledge</td>
</tr>
<tr>
<td></td>
<td>• Data</td>
</tr>
<tr>
<td>Diesel Spill-</td>
<td>• Diesel Spill kits (on-board)</td>
</tr>
<tr>
<td>ages</td>
<td>• Diesel Spill Treatment Pro-</td>
</tr>
<tr>
<td></td>
<td>ducts</td>
</tr>
<tr>
<td></td>
<td>• Fuel Tank Capacity</td>
</tr>
<tr>
<td></td>
<td>• Fuel Tank Protection</td>
</tr>
</tbody>
</table>

Lessons Learnt

Data

Highways England, Police and DVSA all have useful data relating to commercial vehicles however, it is not being managed and shared at present in order to provide the maximum benefits.

Internally, Highways England has a number of separate data sets that are all useful but could be better managed. Further to this, the Police have data for each force but consultation suggests that for commercial vehicles there is no central database.

Data is a very powerful tool for making informed decisions and supporting enforcement efforts. There are significant benefits to the better management of data internally and sharing between different agencies.

- Consider data gaps that can be addressed
- Develop a data sharing agreement with other relevant agencies

Foreign Vehicles

During the course of the project, we have learnt a number of things specifically relating to foreign operators and drivers.

Data suggests that compliance levels among foreign operators are lower than those of GB operators. As an example, DVSA found that 42% of foreign vehicle tachograph records would be subject to a fixed penalty compared to 28% for GB vehicles.

As well as poorer levels of compliance, there are issues with enforcing against foreign operators, as the Traffic Commissioners do not have jurisdiction over them. Foreign drivers are made to pay fixed penalties on the day of the offence whereas usually they would have 28 days to make the payment.

- Review existing data and improve quality of data collected
- Work with enforcement agencies to improve enforcement against foreign operators
- Educate foreign drivers on UK motorway usage
Diesel Spillages

 Diesel Spill Kits (on-board)

Consultation has shown that around two thirds of all incidents involve goods vehicles however many operators do not equip their vehicles with diesel spill kits. As such, if they are involved in a spillage incident, it will remain untreated until a response unit arrives.

There is potential to reduce the impact of incidents by reducing treatment time. If more goods vehicles carried spill kits that could be applied by the driver, then there is potential to mitigate the impact by reducing the spread of the spillage, road repair requirements and contamination.

- Incentivise operators to carry spill kits
- Develop diesel spillage best practice guidance for operators including information on products and their application
- Publicise the costs, charges and impact of diesel spillage incidents

Diesel Spill Treatment Products

A range of products are used by Highways England. There is inconsistency across different traffic areas and in some, multiple products are used. (In Area 7 for example, four different products are currently used.)

There is potential to maximise the benefits of such treatments by identifying the most effective product and using it nationally. Capital savings could be made by ‘bulk buying’ one product and a reduction of training costs for multiple products.

- Product testing/comparison
- National utilisation

Fuel Tank Capacity

Research has shown that there are no maximum dimensions for diesel tanks. Some foreign vehicles entering the UK have ‘double tanks’ which can carry double the amount of fuel carried on standard GB good vehicles.

There is potential to limit the impact of spillages by limiting the amount of diesel, which can be carried by vehicles or limiting the maximum capacity of fuel tanks.

- Investigate the best course of action
- Lobby for amendments to Construction & Use Regulations

Fuel Tank Protection

Research has shown that fuel tanks are significantly less protected from external impact on articulated good vehicles when compared to the rigid type, where side rails usually protect the tanks. On articulated good vehicles, the tanks are often flush with the outermost edges of the tractor unit.

There is potential to reduce the impact of spillages by increasing fuel tank protection. This might be achieved through increasing the specification of ‘double skinned’ and self-sealing tanks on tractor units.

- Promote the specification of ‘safer’ tanks
- Lobby for amendments to Construction & Use Regulations
Implementation Plan
4. Implementation Plan

Diesel Spillage Interventions Implementation Plan

This section outlines two interventions with reference to how the number of diesel spillage related issues on the SRN can be reduced. Each intervention comprises of a number of sub-tasks and each of the sub-tasks has been allocated timescales for implementation.

The recommended interventions have been collated into the following groups:

- Diesel spillage guidance / best practice
- Pilot

Table 2 presents one intervention that the Safety, Engineering and Standards team (SES) might consider moving forward with:

<table>
<thead>
<tr>
<th>Ref</th>
<th>Group</th>
<th>Proposed Approach</th>
<th>Timescale</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS2</td>
<td>Identify the most effective product(s) for treating diesel spills through trialling and train traffic officers in their use</td>
<td>Compile list of all treatment types being used in all traffic areas</td>
<td>Short (3 Months)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conduct testing to establish the best set of products for Traffic officers to carry in their vehicles</td>
<td>Short (3 Months)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pilot best product(s) (such as Fuel Safe) in other traffic areas and obtain feedback on performance</td>
<td>Short (3-6 Months)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If trials successful, roll out product(s) nationally to all areas</td>
<td>Medium (1-2 Years)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Encourage operators to carry spill kits (such as fuel safe) especially if they have been involved in a diesel spillage incident in the past</td>
<td>Medium (Ongoing with TO contact with driver/operators)</td>
</tr>
</tbody>
</table>

Table 2: Potential diesel spillage interventions

Detailed write-ups of what the interventions involve, what has led to their creation and how they can be implemented are provided overleaf:
DS2 - Identify the most effective product(s) for treating diesel spills by trialling products and training traffic officers in their use

Issue

- A variety of products for treating diesel spillages are being used in different regions across England
- There is very little (if any) technical information concerning the performance of these treatment products
- Common knowledge of products being used is not shared amongst parties involved in maintaining and managing the strategic road network
- There is a need to identify all the different products being used in different regions and a record of these products needs to be developed for future reference
- Some Traffic Officers are required to work in more than one region. If each region uses different products then these Traffic Officers will need to be trained to use every product they encounter. This adds additional cost to the model
- A large number of fleet operators do not equip their vehicles with a spill kit meaning if they are involved in a spillage it will remain untreated until a response unit arrives at the scene
- If different products are being used by operators as well as traffic officers, it becomes difficult to treat the road surfaces therefore there is a need for one universal product

Evidence

- The review of diesel spill clean-up procedures conducted by TRL mentions that there are a range of products used by different areas\(^2\)
- The site visit to Perry Barr (Kier) in area 9 revealed that they were using two products namely; Fuel Safe and Sphag-Sorb
- Highways England reported that area 7 were using four different products including Spill Dry
- Area 10 and 13 were found to be using just one product which is Sphag-Sorb
- A Traffic Officer earns an average salary of £22,637 per year\(^3\)
- Of the survey respondents consulted during the stakeholder phase of this project, 42% said they did not equip their vehicles with a spill kit\(^4\)

Potential solution

Highways England should consider conducting a comprehensive trial of the different products used to determine which product is most effective at treating diesel spills.

In order to do this a list of available products should be assembled through consultation with each of the area service contract providers. The identified products should then be tested and graded according to how they perform against a number of key criteria. Finally Traffic Officers should be trained to use the most effective products and these should be rolled out across the network.

If the Incident Prevention Team choose not to progress this intervention further then the SES Team might consider including this as part of the incident timeline work that they hope to procure shortly.

Staged approach to delivering intervention

a) Compile list of available products and determine how much they cost by consulting with all of the area service contract providers

b) Conduct a test of the products to determine the most effective product and grade the products effectiveness by considering the following:
 - Do the new products absorb diesel as claimed?
 - If so, at what rate can they absorb and is it fast enough to counter the breakdown of the pavement structure/strength and maintain its safe skidding resistance for traffic at normal

\(^2\) TRL. 2010: Review of Diesel Spillage Clean-up Procedures. pp 7
\(^3\) https://myjobsearch.com/careers/highways-officer.html
\(^4\) AECOM analysis 2016
speeds? Can speeds be reduced and be safely maintained and for how long after the spillage?

- If it does not prevent total breakdown, can the product delay deterioration, possibly into off-peak hours?
- Does the direct application of these products on the surface actually create a skidding problem itself?
- What quantities are involved per metre squared for the products to be effective?
- What is the resultant capital cost?
- What are the delay savings from using the products and negating the need for pavement renewals/driver delay?
- Can they be applied simply by Traffic Officers/MAC staff?
- Is training, health and safety an issue and if so what are the implications/cost?
- Subject to satisfactory performance, how much product is likely to be needed typically and can it fit into an already weight constrained Traffic Officers vehicle?
- Are the products detrimental to the pavement for other reasons in accordance with HA standards on pavement engineering?
- Are the products environmentally friendly as claimed, including its disposal? Are they Environmental Agency approved?

c) Pilot the best product(s) in other traffic areas and obtain feedback on performance and:

- Determine cost of training / trainer by consulting with Kier (Area 9) for instance
- Determine cost of traffic officer to attend course based on an average salary of £22,637 per year\(^5\)
- Train traffic officers to use product (if not already done so) using the same model as applied by Kier in area 9

d) Roll out the most effective product(s) across the entire network

e) Incentivise operators to carry spill kits (such as fuel safe) especially if they have been involved in a diesel spillage incident in the past. This could be achieved by:

- Obtaining results from diesel spillage trials and determine the most effective product(s)
- Compiling list of operators involved in a spillage incident in the last five years by consulting HE data
- Incentivising these identified operators to carry spill kits by sending them the best practice spillage guide / costs document
- Considering subsidising the cost of HE’s preferred spillage treatment to increase uptake
- Consulting with industry and determine if the number of operators carrying spill kits has increased

Following trials to determine the most effective diesel spillage product(s), Highways England might look at incentivising operators that have been involved in a diesel spillage in the last five years to carry the preferred Highways England product for treating spills. If drivers have a spill kit on board their vehicle and are trained on how to use the kit, they would be able to treat the surface themselves and help reduce the impact of the spillage rather than let the surface worsen.

Another possible measure that Highways England might consider adopting is to subsidise the cost of the spillage treatment product for operators and publicise the fact that they are doing so. If this is done in conjunction with the best practice diesel spillage prevention guide, this may encourage greater operator uptake for those that have not been involved in a spillage incident.

\(^5\) https://myjobsearch.com/careers/highways-officer.html
Highways England Business Case

Funding for diesel spillage interventions
Document control

Document information

<table>
<thead>
<tr>
<th>Document title</th>
<th>Funding for diesel spillage interventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author</td>
<td>PA Consulting</td>
</tr>
<tr>
<td>Owner</td>
<td>John Walford / Amanda Mushing</td>
</tr>
<tr>
<td>Distribution</td>
<td>AECOM</td>
</tr>
<tr>
<td>Document status</td>
<td>Final</td>
</tr>
</tbody>
</table>

Revision history

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Description</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27/02/17</td>
<td>1st Draft</td>
<td>PA Consulting</td>
</tr>
<tr>
<td>2</td>
<td>03/04/17</td>
<td>Final</td>
<td>PA Consulting</td>
</tr>
</tbody>
</table>

Reviewer list (consultation/concurrence)

<table>
<thead>
<tr>
<th>Name</th>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>☒ TAME/TASM (will be Chief Analyst unit)</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>TAME/TASM (will be Chief Analyst unit)</td>
</tr>
<tr>
<td>☐ Health and safety team</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>Health and safety team</td>
</tr>
<tr>
<td>☐ Technical specialists - equality/environment impact assessments</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>Technical specialists - equality/environment impact assessments</td>
</tr>
<tr>
<td>☒ Commercial Manager</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>Commercial Manager</td>
</tr>
<tr>
<td>☒ Procurement Business Partner</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>Procurement Business Partner</td>
</tr>
<tr>
<td>☒ Finance Business Partner</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>Finance Business Partner</td>
</tr>
<tr>
<td>☒ Tax Manager</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>Tax Manager</td>
</tr>
<tr>
<td>☐ General Counsel</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>General Counsel</td>
</tr>
<tr>
<td>☐ Customer Operations</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>Customer Operations</td>
</tr>
<tr>
<td>☒ Human Resources</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>Human Resources</td>
</tr>
<tr>
<td>☐ Estates</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>Estates</td>
</tr>
<tr>
<td>☒ Information Communications Technology</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>Information Communications Technology</td>
</tr>
<tr>
<td>☒ Programme/Portfolio Office</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>Programme/Portfolio Office</td>
</tr>
</tbody>
</table>

Document sign-off

<table>
<thead>
<tr>
<th>Name</th>
<th>Signature</th>
<th>Title</th>
<th>Date of issue</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBC</td>
<td>TBC</td>
<td>Project Manager</td>
<td>TBC</td>
<td>TBC</td>
</tr>
<tr>
<td>TBC</td>
<td>TBC</td>
<td>Senior Responsible Owner</td>
<td>TBC</td>
<td>TBC</td>
</tr>
</tbody>
</table>

References:

1. Executive Summary
1.1 Introduction
This business case is part of a wider study which focuses on diesel spillage prevention. The full report details out interventions to prevent diesel spills on the SRN. For the purposes of this report, intervention DS2 is reported and it seeks approval for the SES team to spend £83,833 on the following trial:

- Identify the most effective product(s) for treating diesel spills through trialling and testing to establish the best set of products for Traffic officers to carry in their vehicle. If trials successful, roll out product(s) nationally to all areas and train traffic officers in their use, and using best practice guides and interaction with drivers/operators, encourage operators to carry spill kits (such as fuel safe) especially if they have been involved in a diesel spillage incident in the past

1.2 Strategic Case
1.2.1 Strategic context
The strategic drivers for this business case have been developed from the Highways England Outline Business Case for the Commercial Vehicles Programme. The overarching aim of the CVIP team to support the Highways England strategy is to 'Maintain incident management capability whilst developing and delivering a targeted, intelligence led commercial vehicle incident prevention programme'.

Additionally it is important for SES to trial and recommend products and ways of working that minimise the damage caused by incidents.

1.2.2 The case for change
The SRN whilst only constituting 2.4% of England’s road network, carries 67% of its freight traffic and incidents on the SRN have a significant and disproportionate effect in terms of network disruption and severity of (PIC). Reducing the frequency and impact of commercial vehicle incidents is therefore vitally important in helping Highways England deliver a more free-flowing network to support economic growth and drive forward plans to deliver a safer road network.

1.3.1 OBC options
The OBC outlined a set of 27 interventions that had been analysed and refined into three delivery streams – safer people, safer roads and communication enablers that would support the CVIP team strategy. Within these three work streams were recommendations for a number of interventions activities.

Reference OBC
1.3.2 The refinement of the options

The OBC was written with the intention of delivering 27 interventions as part of a delivery plan. However, within these 27 interventions there are a number of interventions and proposals that are the either the subject of stakeholder influence and/or case study activity that sit as project work, or stakeholder engagement activity and/or issues that require analysis or case studies. These activities therefore lack the clarity or detail required currently to be translated into a deliverable business case that focuses on a particular intervention from which clear deliverables can be determined.

The interventions have, as a result, been reviewed in order to identify outputs that can be delivered in the short/medium/long terms and these will be taken forward by the CVIP team as business case proposals in three focus areas:

- Driver’s hours interventions
- Diesel spillage interventions
- Tyre management interventions

But in this business case the focus is on one of the diesel spillage interventions for the SES team to take forward as follows:

- **DS2 Identify the most effective product(s) for treating diesel spills through trialling and train traffic officers in their use.** This option looks to undertake work to test a number of potential products for dealing with diesel spillages with a view to identifying a single one for use across the SRN. It will also include a training programme to ensure all TOs know how best to use the product that will be used as the choice product in the future. Through the use of the information gained, best practice guide to be developed by the CVIP team and interaction with drivers/operators it is then planned to incentive drivers operators to carry and use spill kit to reduce the risk of potential claims against operators who incur spillages due to bad practice.

1.3.3 Key Findings

<table>
<thead>
<tr>
<th>DS2 Identify the most effective product(s) for treating diesel spills through trialling and train traffic officers in their use</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Non capital costs</td>
<td>£83,833</td>
</tr>
<tr>
<td>Risk retained</td>
<td></td>
</tr>
<tr>
<td>Total Costs</td>
<td>£83,833</td>
</tr>
<tr>
<td>Less Non-cash releasing benefits</td>
<td>£203,029</td>
</tr>
<tr>
<td>Total</td>
<td>£119,196</td>
</tr>
</tbody>
</table>

1.3.4 Sensitivity Analysis

<table>
<thead>
<tr>
<th>Evaluation Results - based on 2010 discounted rates</th>
<th>Option 3 – DS2 Identify the most effective product(s) for treating diesel spills through trialling and train traffic officers in their use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value Benefits (PVB) - Safety benefits only</td>
<td>£203,029</td>
</tr>
<tr>
<td>Value Cost (PVC)</td>
<td>£83,833</td>
</tr>
<tr>
<td>Net Present Value (NPV)</td>
<td>£119,196</td>
</tr>
<tr>
<td>Benefit Cost Ratio (BCR)</td>
<td>2.4</td>
</tr>
</tbody>
</table>
1.4 Commercial Case

1.4.1 Agreed risk allocation and charging mechanism

The agreed risk assessment will require value attribution by the SES team and any areas where risks involve commercial contract or engagement will require Highways England Commercial sign off.

1.4.2 Key contractual arrangements

Following a conclusive trial it may require a contract for the purchase and distribution or local purchase of the chosen product for Highways England teams. The charging mechanism will be in accordance with Highways England Commercial directives.

1.4.3 Agreed implementation timescales

The timescale for the option is as follows:

<table>
<thead>
<tr>
<th>Option</th>
<th>Agreed timescale</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS2 Identify the most effective product(s) for treating diesel spills through trialling and train traffic officers in their use</td>
<td>2 years</td>
<td>Including roll out</td>
</tr>
</tbody>
</table>

Accountancy treatment

The agreed accountancy treatment will be in line with the agreed Highways England Financial and TAME directives.

1.5 Financial Case

1.5.1 Financial expenditure

The financial implications of the preferred product for dealing with diesel spillages will require agreement and approval for final budgetary spending figures that are currently only proposed in this Business Case. This is because these figures cannot be finalised until such agreements are in place.

The agreed funding can still only be the model for potential expansion as the associated costs in this case will require further Service Level Agreement (SLA) and agreements with the selected forces.

1.5.2 Financial expenditure

<table>
<thead>
<tr>
<th></th>
<th>Yr3 (17/18)</th>
<th>Yr4 (18/19)</th>
<th>Yr5 (19/20)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preferred choice:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost (DS2)</td>
<td>£81,833</td>
<td>£1,000</td>
<td>£1,000</td>
<td>£83,833</td>
</tr>
<tr>
<td>Benefit (DS2)</td>
<td>£144,071</td>
<td>£28,987</td>
<td>£29,972</td>
<td>£203,029</td>
</tr>
<tr>
<td>Total value</td>
<td>£225,904</td>
<td>£29,987</td>
<td>£30,972</td>
<td>£286,862</td>
</tr>
</tbody>
</table>

1.5.3 Overall affordability and balance sheet treatment
This proposal is for formal agreement for a support contract or enabling purchase contract with either a single selected supplier or through a network. Costs agreed will be managed in accordance with the financial direction of the Highways England SES Financial manager and the SES team.

1.6 Management Case
1.6.1 Project management arrangements

This project will be managed by the ICT and SES project teams in conjunction with CVIP team. Overarching programme management will be conducted by SES PMO through the Programme Manager to the SRO. The Governance arrangements are laid out in Figure 2-1 of the OBC at Ref A.

1.6.2 Benefits and risk management

Benefits management process will be in accordance with existing Highways England Benefits Management directives.

Risk management

Risks have been identified and recorded in the SES risk registers. Risk ownership and delegation has been agreed with Highways England Commercial and escalation processes are managed in accordance with the Highways England Risk Management directives.

1.6.3 Post project evaluation arrangements

SES will conduct post project evaluation in accordance with the Highways England Programme Management directive.7

1.7 Recommendation

The recommendation is to deliver a study to identify the best diesel spillage products that can then be used by the Highways England teams on the ground. The products would also be recommended to drivers/operators who have been involved in a diesel spillage incident on the SRN and are known to Highways England.

The impact and potential benefits of this and another diesel spill option being developed by the CVIP team believed to better achieve the desired strategic outcomes that both CVIP and SES team hopes to achieve. It has been agreed with Highways England that this combined approach has been chosen to be delivered separately

- DS2 will be delivered by the SES team as part of the Incident Timeline work due to be procured shortly

Signed:

Date:

Senior Responsible Officer

CVIPT

7 The project control framework handbook v2 April 2013.pdf
2. The Strategic Case

2.1 Introduction

This Full Business Case is for the provision of funding and support to deliver interventions aimed at improving awareness of the need for checking, identification and management of vehicles to prevent diesel spillages and for the actions to take place when and where they occur. It is supported by work to identify the best potential diesel spillage product to be used by Highways England patrols and for training in their use. Finally the combination of the two will be used as incentivisation for driver/operators to better manage and deal with diesel spillages and to make them aware of the potential charges that can be occurred if Highways England intervention is required.

Structure and content of the document

The FBC has been prepared using the standards laid out in the Green Book guidance on delivering Public Sector Business Cases using the five case model.

Part A: The strategic context

2.2 Organisational overview

The SRN whilst only constituting 2.4% of England’s road network, carries 67% of its freight traffic and incidents on the SRN have a significant and disproportionate effect in terms of network disruption and severity of Personal Injury Collisions (PIC). Reducing the frequency and impact of commercial vehicle incidents is therefore vitally important in helping Highways England deliver a more free-flowing network to support economic growth and drive forward plans to deliver a safer road network.

The strategic drivers for this business case have been developed from the Highways England Outline Business Case for the Commercial Vehicles Programme. The overarching aim of the CVIP team to support Highways England’s strategy is to ‘Maintain incident management capability whilst developing and delivering a targeted, intelligence led commercial vehicle incident prevention programme’.

The following objectives have therefore been developed:

- Contribute to the ongoing reduction in killed or serious injury incidents on the strategic road network to assist Highways England in reducing the severity and number of commercial vehicle incidents by 20%.
- Reduce the economic impact of commercial vehicle related incidents
- Contribute to the longer term vision of a network with zero unplanned disruption
- Provide a reliable network which supports business and commerce
- Foster multi-agency relationships to promote a coordinated response
- Prudent use of funding to enable Highways England to act as an agent for change.

The Highways England 5 Year Health and Safety Plan (2015) requires the SES team to deliver a Commercial Vehicle Incident Prevention Programme in recognition of the impact that this class of vehicle has when involved in a collision, and reduce the severity and number of commercial vehicle incidents by 20%.

2.3 Other organisational strategies

The Department for Transport (DfT) Performance Specification sets out a number of key performance indicators (KPIs) on which the Government and Strategic Roads Network Monitor will monitor Highways England. These areas are also considered in the Roads Investment Strategy (RIS) which outlines the DfT’s long term proposals for the strategic road network.

Part B: The case for change

2.4 Investment objectives.

The objectives of this initiative are focused on short and medium term initiatives to deliver benefits:

8 OBC Section 2, Table 2-2 CVIPT alignment with Highways England strategic objectives.
8 See Section 2, Table 2-2 CVIPT alignment with Roads Investment Strategy.
2.4.1 Objective 2 – DS2 Identify the most effective product(s) for treating diesel spills through trialling and train traffic officers in their use.

A variety of products for treating diesel spillages are being used in different regions across England and a record of these products needs to be developed for future reference. Additionally there is very little (if any) technical information concerning the performance of these treatment products.

A study is therefore required to identify all the different products being used in different regions, then assess and evaluate the performance of the different products in use to better understand their capabilities.

Some Traffic Officers are required to work in more than one region. If each region uses different products then these Traffic Officers will need to be trained to use every product they encounter.

Common knowledge of products being used is not shared amongst parties involved in maintaining and managing the strategic road network and there is a need to standardise the products being used across all regions but also to ensure Traffic Officers are trained in the use of the range of selected products used by Highways England.

<table>
<thead>
<tr>
<th>Ser</th>
<th>Intervention</th>
<th>Timeframe</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS2 Identify the most effective product(s) for treating diesel spills through trialling and train traffic officers in their use.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Compile list of all treatment types being used in all traffic areas</td>
<td>3 months</td>
</tr>
<tr>
<td>2.</td>
<td>Conduct testing to establish the best set of products for Traffic officers to carry in their vehicles</td>
<td>3 months</td>
</tr>
<tr>
<td>3.</td>
<td>Pilot best product(s) (such as Fuel Safe) in other traffic areas and obtain feedback on performance</td>
<td>3-6 months</td>
</tr>
<tr>
<td>4.</td>
<td>If trials successful, roll out product(s) nationally to all areas</td>
<td>1 - 2 years</td>
</tr>
<tr>
<td>5.</td>
<td>Encourage operators to carry spill kits (such as fuel safe) especially if they have been involved in a diesel spillage incident in the past</td>
<td>Ongoing with Traffic Officers contact with driver/operators</td>
</tr>
</tbody>
</table>

2.5 Spending (investment) objectives

The objectives of this initiative are focused on two areas of activity:

1. Conduct a study to identify the best diesel spillage treatment product

2. Trial selected products on areas of the SRN to evaluate their use. On conclusion of this trial the arrangement will then be made to look to roll this product out across the SRN for use by Traffic Officers accompanied by a training period to familiarise the operators with the product.

2.6 Business Needs

The OBC identified a number of interventions focusing on delivering safer roads and safer drivers. These have been further refined and analysed. As a result a number of issues relating to diesel spillage incidents and management were identified and proposals for addressing these put forward for delivery as a Business Case. These can be summarised into two key areas:

- Reducing the amount of incidents of low level spillage and immediate spillage action that can be taken by driver operators to reduce the impact of delays where they occur slowing traffic flow and impacting on wider business/industry costs due to delays.

- Identifying a diesel spillage product that is the most effective at dealing with the range and size of spillages and then issuing this to all Highways England Traffic Officers, including training in
the use of that product. The potential benefits are the reduced purchase costs through use of central contracting and a standardisation and potential reduction in training and handling errors where all Traffic Officers are trained and adhere to standard partitive for dealing with spillages.

2.7 Main benefits.

2.7.1 Strategic Benefits.

The initiatives outlined in the objectives to this case are intended to support the strategic benefits outlined in the CVIP team programme at reference A:

2.7.2 Benefits by key stakeholder group.

Highways England - This information and enforcement intervention will deliver CVIP team benefits that also contribute to Highways England’s overall target of a 20% reduction in commercial vehicle related KSI casualties by 2020 compared to a 2005-2009 baseline."

Department for Transport - Achieving a reduction in KSI and/or delays will also support the DfT’s Road Investment Strategy.

2.7.3 Key risks

The key risks are outlined in Section 6.9 of (Reference OBC) and remain extant for this Business Case. A more detailed list of the risks for this pilot study is at Annex A.
<table>
<thead>
<tr>
<th>Intervention Serial</th>
<th>Risk</th>
<th>Impact</th>
<th>Probability</th>
<th>Costs</th>
</tr>
</thead>
</table>
| DS1-1 | Testing of products - Lack of statistically robust data or evidence of effectiveness | Variance of products in different areas
Lack of buy in from traffic officers
Loss of economy of scale through bulk buy of single product | High | How many Traffic Officers are deployed at any one time
£25 fuel safe (5 ltr)
£25 Sphagsorb (5 bags) Bunding |
| DS1-2 | Roll out nationally - Traffic Officers are not familiar with chosen products | Training costs for upskilling across SRN | High | See Excel table |
| DS1-3 | Training is not conducted in a timescale that matches change of product | Traffic Officers issued with product they are not familiar with and thus slower to use at incident | High | Delay cost to traffic flow |
| DS1-4 | A contract for supply cannot be made in a satisfactory timeframe | Traffic Officers continue to use diverse materials and area contracts require running on/extension | High | Higher costs due to continuing to utilise varied products |
| DS1-5 | Centralised funding and distribution cannot be agreed with areas | Continue with area based purchase of products as currently undertaken | High | Loss of economy of scale of central procurement |
| DS2-1 | Operators unwilling to carry spill kit due to cost or capacity issues in vehicles | Continue with current DS spillage rates and clean-up costs. Higher cost to Highways England | High | Delay cost. Increased product cost to Highways England (higher usage)
Environmental costs (delays) |

2.7.4 Constraints

The key constraints are outlined in Section 2.3.7 of the OBC, of note the key constraints are:
• Delivery of the programme will consume a significant proportion of the SES / CVIP Teams’ available resource limiting capability to deliver other tasks or identify other incident prevention needs.
• The CVIP team Programme is constrained by a reliance on alignment with work-streams of other Highways England departments.

2.7.5 Dependencies

The key external dependencies for this Business case are as follows:

• Identification of research partner for DS product spillage testing and trial
• Endorsement and agreement of the selected product across all Highways England regions

3. Economic Case

3.1 Introduction

In accordance with the Capital Investment manual and requirements of HM Treasury’s Green Book (A Guide to Investment Appraisal in the Public Sector), this section of the FBC documents the process and evidence to demonstrate that this is the most economic option in terms of Highways England CVIP teams business needs and in realising VfM.

3.2 Critical Success Factors.

Critical success factors for this pilot scheme will include:

- A robust and simple monitoring process to inform key stakeholders.
- An effective and simple reporting process that delivers key success data on the pilot study to inform planning for potential expansion of the intervention. This will particularly focus on the benefits to DfT, Highways England and industry bodies forces involved to encourage participation.

3.3 The Study

3.3.1 DS2 Identify the most effective product(s) for treating diesel spills through trialling and train traffic officers in their use.

This option looks to undertake work to test a number of potential products for dealing with diesel spillages with a view to identifying a single one for use across the SRN. It will also include a training programme to ensure all Traffic Officers know how best to use the product that will be used as the choice product in the future. Though the use of the information gained, best practice guide in DS1 and interaction with drivers/operators it is then planned to incentive drivers operators to carry and use spill kit to reduce the risk of potential claims against operators who incur spillages due to bad practice.

<table>
<thead>
<tr>
<th>Option Costs over period of implementation</th>
<th>Potential Benefits value over that period</th>
<th>Benefit Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>£83,833</td>
<td>£203,029</td>
<td>2.4</td>
</tr>
</tbody>
</table>
3.4 Summary of economic appraisals of costs and benefits, with cost benefit analysis.

The breakdown of costs is at Annex B. The annual costs are summarised below:

<table>
<thead>
<tr>
<th>Period</th>
<th>DS2 Identify the most effective product(s) for treating diesel spills through trialling and train traffic officers in their use.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yr3 (17/18)</td>
<td>£81,833</td>
</tr>
<tr>
<td>Yr4 (18/19)</td>
<td>£1,000</td>
</tr>
<tr>
<td>Yr5 (19/20)</td>
<td>£1,000</td>
</tr>
<tr>
<td>Total</td>
<td>£83,833</td>
</tr>
</tbody>
</table>

3.5 Optimism bias adjustment

All costs have applied optimism bias of 44% that is for a Pilot Scheme as a Stage 1 project\(^\text{10}\). This data will be refined as data is analysed during the scheme.

3.6 Risk assessment

The Risk register is at Annex A. The key economic risks identified are as follows:

<table>
<thead>
<tr>
<th>Interventon Serial</th>
<th>Risk</th>
<th>Impact</th>
<th>Probability</th>
<th>Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS1-4</td>
<td>A contract for supply cannot be made in a satisfactory timeframe</td>
<td>Continue with area based purchase of products as currently undertaken</td>
<td>High</td>
<td>Higher costs due to continuing to utilise varied products</td>
</tr>
<tr>
<td>DS1-5</td>
<td>Centralised funding and distribution cannot be agreed with areas</td>
<td>Continue with area based purchase of products as currently undertaken</td>
<td>High</td>
<td>Loss of economy of scale of central procurement</td>
</tr>
</tbody>
</table>

3.7 Sensitivity analysis

<table>
<thead>
<tr>
<th>Evaluation Results - based on 2010 discounted rates</th>
<th>DS2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value Benefits (PVB) - Safety benefits only</td>
<td>£203,029</td>
</tr>
<tr>
<td>Value Cost (PVC)</td>
<td>£83,833</td>
</tr>
<tr>
<td>Net Present Value (NPV)</td>
<td>£119,196</td>
</tr>
<tr>
<td>Benefit Cost Ratio (BCR)</td>
<td>2.4</td>
</tr>
</tbody>
</table>

All figures rounded to the nearest £1,000.

3.8 Preferred Option

The recommendation is to do a study to identify the best diesel spillage products that can then be used by the Highways England teams on the ground, but also recommended to driver/operators for use by those individuals and operators, particularly if they have a spillage situation in the past and are known to the Highways England.

\(^{10}\) Source: DfT TAG Unit A1.2 Section 3.5.7 and Table 8. November 2014
4. Commercial Case

4.1 Procurement strategy.

- To deliver DS2 intervention there will be a requirement to agree MOUs and Service Level agreements with participating Highways England regions, agencies and industry partners. This will need to be outlined/discussed to agree time, engagement level, commitment, governance and reporting.
- Procurement of new/extra equipment through non-framework competitive tender will require requirements set and bid costs to be estimated.

4.2 Service requirements
Inter departmental communication and information passage arrangement will need to be agreed between participating forces and the SES team.

4.3 Charging mechanism.
Inter departmental charging and accruals/costs methodology and system needs to be developed and agreed with Highways England regions.

4.4 Risk transfer.
The key Commercial risks are at Annex A, highlighting the ownership and transfer of key risks for this study:

4.5 Key contractual arrangements (including contract length).
Existing contractual arrangements will continue to apply.

4.6 Personnel implications (‘TUPE’).
Nil

4.7 Accountancy treatment.
HE Finance and TAME accountancy processes apply.

5. Financial Case

5.1 Public capital and revenue requirements
In accordance with Highways England Financial direction.

5.2 Overall funding and affordability

5.2.1 The cost/benefit analysis is at the table at ref Annex B

6. Management Case

6.1 Programme and project management methodology and structure.
This product trial will be managed and monitored in accordance with the agreed SES governance and approval processes described at Para 6.3 of Ref A. This will include project, risks, stakeholder and benefit management strategy and plans.
6.2 Programme and project management plans.

- 6.2.1 Engage. Gain buy-in from agencies and industry partners.
- Agree cross agency and industry relationships, forum and data sharing protocols.
- Develop and manage a stakeholder management strategy and plan.

6.2.2 Develop plan in conjunction with selected partners/agencies

- Agree trial/pilot regions and products to be used
- Agree targets / KPIs

6.2.3 Monitoring and control.
A joint working group and reporting process will need to be established to monitor and report on performance of the pilot scheme to both the SES and CVIP team, Highways England and industry partners. This will look at the implementation phase, study phase and post study evaluation.

6.2.4. Review and identification of learning from experience.
A key requirement will be the review, reporting and identification of lessons identified for the interventions in this plan, especially where initiatives are to be developed further.
This will require engagement from the key stakeholders as well as a plan for dissemination of the findings to potential expansion forces, agencies and industry partners.
Diesel Spillage Intervention Risks

<table>
<thead>
<tr>
<th>Interven. Serial</th>
<th>Risk</th>
<th>Owner</th>
<th>Impact</th>
<th>Probability</th>
<th>Factor (Time, Cost, Quality)</th>
<th>Mitigation</th>
<th>Response</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS1-1</td>
<td>Testing of products - Lack of statistically robust data or evidence of effectiveness</td>
<td>SES team</td>
<td>Variance of products in different areas</td>
<td>High</td>
<td>How many TO are deployed at any one time</td>
<td>Decision to be taken by Highways England to adopt a single product, based on cost, ease of use and preference of TO's</td>
<td>Accept</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lack of buy in from traffic officers</td>
<td></td>
<td>£25 fuel safe (5 ltr)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Loss of economy of scale through bulk buy of single product</td>
<td></td>
<td>£25 Sphagsorb (5 bags)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bunding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS1-2</td>
<td>Roll out nationally - Traffic Officer's are not familiar with chosen products</td>
<td>Highways England</td>
<td>Training costs for upskilling across SRN</td>
<td>High</td>
<td>See cost benefit table</td>
<td>Once trial is complete mandate product to be used</td>
<td>Accept</td>
<td>From original cost analysis document</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS1-3</td>
<td>Training is not conducted in a timescale that matches change of product</td>
<td>Highways England</td>
<td>Traffic Officers issued with product they are not familiar with and thus slower to use at incident</td>
<td>High</td>
<td>Delay cost to traffic flow</td>
<td>Training to be completed before product roll out</td>
<td>Accept</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interven. Serial</th>
<th>Risk</th>
<th>Owner</th>
<th>Impact</th>
<th>Probability</th>
<th>Factor (Time, Cost, Quality)</th>
<th>Mitigation</th>
<th>Response</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS1-4</td>
<td>A contract for supply cannot be made in a satisfactory timeframe</td>
<td>Highways England Commercial</td>
<td>Traffic Officers continue to use diverse materials and area contracts require running on/extension</td>
<td>High</td>
<td>Higher costs due to continuing to utilise varied products</td>
<td>Commercial to engage and identify suitable supply and distribution provider as soon as preferred product is identified</td>
<td>Need to identify current product costs, and likely savings if move to single centrally procured product. Can be centrally bought and distributed or centrally procured through network. Needs Highways England / Commercial to investigate</td>
<td></td>
</tr>
<tr>
<td>DS1-5</td>
<td>Centralised funding and distribution cannot be agreed with areas</td>
<td>Highways England Finance</td>
<td>Continue with area based purchase of products as currently undertaken</td>
<td>High</td>
<td>Loss of economy of scale of central procurement</td>
<td>Identify product, change budget authorisation and engage Commercial</td>
<td>Accept</td>
<td></td>
</tr>
<tr>
<td>DS2-1</td>
<td>Operators unwilling to carry spill kit due to cost or capacity issues in vehicles</td>
<td>Highways England</td>
<td>Continue with current DS spillage rates and clean-up costs. Higher cost to Highways England</td>
<td>High</td>
<td>Delay cost. Increased product cost to Highways England (higher usage) Environment costs (delays)</td>
<td>use forum and lobbying to change operator behaviours and potential legislation</td>
<td>Accept</td>
<td>This is a candidate for a regulatory change followed by enforcement. Issue will be managing overseas operators and interface with EU legislation</td>
</tr>
</tbody>
</table>
Annex B

Intervention costs/benefits
Please note this page includes both the trial DS2 but also the other diesel spill intervention being taken forward by the CVIP team.

DS1-2 Costs and Benefit Summary

<table>
<thead>
<tr>
<th>Ser</th>
<th>Activity</th>
<th>Yr 1 (17/18)</th>
<th>Yr 4 (18/19)</th>
<th>Yr 5 (19/20)</th>
<th>Total</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DS1</td>
<td>£64,049</td>
<td>£9,978</td>
<td>£5,612</td>
<td>£83,639</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>DS2</td>
<td>£82,818</td>
<td>£1,000</td>
<td>£2,000</td>
<td>£84,818</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Total</td>
<td>£146,862</td>
<td>£10,978</td>
<td>£7,612</td>
<td>£187,472</td>
<td></td>
</tr>
</tbody>
</table>

Benefits to cost ratio for HE costs only

<table>
<thead>
<tr>
<th>Ser</th>
<th>Activity</th>
<th>Yr 1 (17/18)</th>
<th>Yr 4 (18/19)</th>
<th>Yr 5 (19/20)</th>
<th>Total</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DS1</td>
<td>£140,964</td>
<td>£79,242</td>
<td>£83,856</td>
<td>£303,062</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>DS2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ser</th>
<th>Yr 3 (17/18)</th>
<th>Yr 4 (18/19)</th>
<th>Yr 5 (19/20)</th>
<th>Total</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>KSI Benefits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS1</td>
<td>£85,568</td>
<td>£21,101</td>
<td>£15,015</td>
<td>£122,384</td>
<td></td>
</tr>
<tr>
<td>DS2</td>
<td>£129,946</td>
<td>£24,802</td>
<td>£20,847</td>
<td>£175,694</td>
<td></td>
</tr>
<tr>
<td>Delay Benefits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS1</td>
<td>£129,946</td>
<td>£24,802</td>
<td>£20,847</td>
<td>£175,694</td>
<td></td>
</tr>
<tr>
<td>DS2</td>
<td>£129,946</td>
<td>£24,802</td>
<td>£20,847</td>
<td>£175,694</td>
<td></td>
</tr>
<tr>
<td>Additional Benefits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS1</td>
<td>£6,125</td>
<td>£6,125</td>
<td>0</td>
<td>£12,250</td>
<td></td>
</tr>
<tr>
<td>DS2</td>
<td>£6,125</td>
<td>£6,125</td>
<td>0</td>
<td>£12,250</td>
<td></td>
</tr>
<tr>
<td>Total DS1 Benefits</td>
<td>£136,087</td>
<td>£104,867</td>
<td>£29,650</td>
<td>£268,564</td>
<td></td>
</tr>
<tr>
<td>Total DS2 Benefits</td>
<td>£136,087</td>
<td>£104,867</td>
<td>£29,650</td>
<td>£268,564</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>£272,174</td>
<td>£209,734</td>
<td>£59,300</td>
<td>£541,208</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ser</th>
<th>Evaluation Results</th>
<th>Option 1 - Do Nothing</th>
<th>Option 2 - DS1</th>
<th>Option 3 - DS2</th>
<th>Option 4 - Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Value Benefits (PV£) - Safety benefits only</td>
<td>As Is</td>
<td>£638,045</td>
<td>£203,029</td>
<td>£841,074</td>
</tr>
<tr>
<td>2</td>
<td>Value Cost (PV£)</td>
<td>As Is</td>
<td>£82,818</td>
<td>£20,818</td>
<td>£103,636</td>
</tr>
<tr>
<td>3</td>
<td>Net Present Value (NPV)</td>
<td>As Is</td>
<td>£350,000</td>
<td>£115,196</td>
<td>£465,196</td>
</tr>
<tr>
<td>4</td>
<td>Benefit Cost Ratio (SCR)</td>
<td>0</td>
<td>5.2</td>
<td>2.4</td>
<td>3.8</td>
</tr>
<tr>
<td>5</td>
<td>Ranking</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
DS1-2 Costs

DS1 2017 Costs non-discounted

<table>
<thead>
<tr>
<th>Ser</th>
<th>Activity</th>
<th>Yr 5 (17/18)</th>
<th>Yr 4 (16/17)</th>
<th>Yr 3 (15/16)</th>
<th>Total</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(£)</td>
<td>(£)</td>
<td>(£)</td>
<td>(£)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resource (FPI inflation rate)</td>
<td>2.50%</td>
<td>2.50%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Best practice diesel spillage prevention guide</td>
<td>£3,140</td>
<td>£3,228</td>
<td>£3,310</td>
<td>£9,668</td>
<td>Assumed cost based on web research for 5000 pamphlets for design and production. Rates inflated at FPI.</td>
</tr>
<tr>
<td>1.1</td>
<td>Printed production costs</td>
<td>£2,500</td>
<td>£2,563</td>
<td>£2,567</td>
<td>£7,630</td>
<td>Assumed cost based on web research for 5000 pamphlets for design and production. Rates inflated at FPI.</td>
</tr>
<tr>
<td>1.2</td>
<td>Printed distribution costs</td>
<td>£700</td>
<td>£0</td>
<td>£0</td>
<td>£700</td>
<td>Translation into French, German, Spanish, Italian, Polish, Hungarian, Romanian (at £100 per translation)</td>
</tr>
<tr>
<td>1.3</td>
<td>Translation costs</td>
<td>£25,000</td>
<td>£0</td>
<td>£0</td>
<td>£25,000</td>
<td>Assumed cost of external consultant to produce guide</td>
</tr>
<tr>
<td>2</td>
<td>Diesel spillage costs case study document</td>
<td>£20,000</td>
<td>£0</td>
<td>£0</td>
<td>£20,000</td>
<td>Assumes 1/4 of the R&D costs allocated to GV15 - Reduce Fuel Spills</td>
</tr>
<tr>
<td>2.1</td>
<td>Research costs</td>
<td>£10,000</td>
<td>£0</td>
<td>£0</td>
<td>£10,000</td>
<td>Assumed cost of external consultant to produce doc</td>
</tr>
<tr>
<td>3</td>
<td>Raise awareness of best practice guide by distribution via FTA, TOTS, RNA, Trade Fares etc.</td>
<td>£1,000</td>
<td>£0</td>
<td>£0</td>
<td>£1,000</td>
<td>Assumes internal costs using existing HE website</td>
</tr>
<tr>
<td>3.1</td>
<td>Printed distribution costs</td>
<td>£2,500</td>
<td>£2,563</td>
<td>£2,627</td>
<td>£7,690</td>
<td>Assumed based on approx. £50 per 1000 leaflets targeted delivery</td>
</tr>
<tr>
<td>3.2</td>
<td>Web production and hosting costs</td>
<td>£1,000</td>
<td>£0</td>
<td>£0</td>
<td>£1,000</td>
<td>Assumes internal costs using existing HE website</td>
</tr>
</tbody>
</table>

Annual totals | **£64,049** | **£9,378** | **£5,612** | **£83,993** |

DS2 2017 Costs non-discounted

<table>
<thead>
<tr>
<th>Ser</th>
<th>Activity</th>
<th>Yr 5 (17/18)</th>
<th>Yr 4 (16/15)</th>
<th>Yr 3 (15/14)</th>
<th>Total</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(£)</td>
<td>(£)</td>
<td>(£)</td>
<td>(£)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Compile list of all treatments types</td>
<td>£13,333</td>
<td>£0</td>
<td>£0</td>
<td>£13,333</td>
<td>Assumes 1/3 of the R&D costs allocated to GV15 - Reduce Fuel Spills</td>
</tr>
<tr>
<td>1.1</td>
<td>Research costs</td>
<td>£10,000</td>
<td>£0</td>
<td>£0</td>
<td>£10,000</td>
<td>Assumes pilot undertaken over 3 months in all areas</td>
</tr>
<tr>
<td>1.2</td>
<td>Pilot costs</td>
<td>£3,000</td>
<td>£0</td>
<td>£0</td>
<td>£3,000</td>
<td>Costs involved working with selected agencies, and industry partners</td>
</tr>
<tr>
<td>1.3</td>
<td>Resources (incl T&I)</td>
<td>£5,000</td>
<td>£0</td>
<td>£0</td>
<td>£5,000</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Roll out costs</td>
<td>£0</td>
<td>£0</td>
<td>£0</td>
<td>£0</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Purchase costs</td>
<td>£0</td>
<td>£0</td>
<td>£0</td>
<td>£0</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Distribution costs</td>
<td>£0</td>
<td>£0</td>
<td>£0</td>
<td>£0</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Training costs</td>
<td>£53,500</td>
<td>£0</td>
<td>£0</td>
<td>£53,500</td>
<td>Covers half a day/or training of 800 traffic officers and covers costs of trainer and expenses. To pay approx £22,637 per yr. Approx 40 officers can be trained per week per area, cost of trainer per week approx £500</td>
</tr>
<tr>
<td>3</td>
<td>Incentive operators to carry spill kits</td>
<td>£0</td>
<td>£0</td>
<td>£0</td>
<td>£0</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Advertising</td>
<td>£0</td>
<td>£0</td>
<td>£0</td>
<td>£0</td>
<td>Medium term objective</td>
</tr>
</tbody>
</table>

Annual totals | **£83,833** | **£1,000** | **£1,000** | **£83,833** |
DS2 Benefits

<table>
<thead>
<tr>
<th>Ser</th>
<th>Previous Atkins Reference</th>
<th>Tranche Reference</th>
<th>Division</th>
<th>In progress</th>
<th>Reference</th>
<th>Yr 3 (17/18)</th>
<th>Yr 4 (18/19)</th>
<th>Yr 5 (19/20)</th>
<th>Total</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
<td>(f)</td>
<td>(g)</td>
<td>(h)</td>
<td>(i)</td>
<td>(j)</td>
<td>(k)</td>
</tr>
</tbody>
</table>

KSI Benefits

Directly attributable KSI benefits

1) Reduce Fuel Spills

1.1 RnD 3 CO No GV15 £0 £0 £0

1.2 % benefits for this intervention = 80.0% £0 £0 £0 £0

% benefits allocated Total £0 £0 £0 £0

Delay Benefits as vehicle hour saving

Directly attributable delay benefits

2) Reduce Fuel Spills

2.1 RnD 3 CO No GV15 £145,022 £0 £0

2.2 % benefits for this intervention = 80.0% £116,017.30 £0 £0 £116,017

Delay benefits that could have % apportioned to this intervention £116,017 £0 £0 £116,017

3) TOS Support to DVSA

3.1 Tech 2 CO Yes GV24 £145,022 £150,677 £156,648 £452,346

3.2 % benefits for this intervention = 16.5% £23,928.57 £24,861.64 £25,846.86 £74,637

% benefits allocated Total £159,946 £24,862 £25,847 £190,654

Additional Benefits

4) TOS Support to DVSA

4.1 Tech 2 CO Yes GV24 £25,000 £25,000 £25,000 £75,000

4.2 % benefits for this intervention = 16.5% £4,125 £4,125 £4,125 £12,375

% benefits allocated Total £4,125 £4,125 £4,125 £12,375

Total % Benefit allocated £144,071 £28,987 £29,972 £205,029
About AECOM

AECOM (NYSE: ACM) is built to deliver a better world. We design, build, finance and operate infrastructure assets for governments, businesses and organizations in more than 150 countries. As a fully integrated firm, we connect knowledge and experience across our global network of experts to help clients solve their most complex challenges.

From high-performance buildings and infrastructure, to resilient communities and environments, to stable and secure nations, our work is transformative, differentiated and vital. A Fortune 500 firm, AECOM companies had revenue of approximately US$19 billion during the 12 months ended June 30, 2015.

See how we deliver what others can only imagine at aecom.com and @AECOM.