Managed motorways all lane running

Generic safety report

1039092-GSR-016

August 2013

An executive agency of the Department for Transport
Document control

<table>
<thead>
<tr>
<th>Document title</th>
<th>Managed motorways all lane running: Generic safety report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author</td>
<td>Ryszard Gorell and Tom Grahamslaw</td>
</tr>
<tr>
<td>Owner</td>
<td>Max Brown</td>
</tr>
<tr>
<td>Distribution</td>
<td>For Publication</td>
</tr>
<tr>
<td>Document status</td>
<td>Final</td>
</tr>
</tbody>
</table>

Record of issue

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Description</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>02 March 2012</td>
<td>First draft</td>
<td>Ryszard Gorell</td>
</tr>
<tr>
<td>0.2</td>
<td>05 March 2012</td>
<td>Second draft</td>
<td>Amendments by A Alcorn</td>
</tr>
<tr>
<td>1.0</td>
<td>23 March 2012</td>
<td>Final</td>
<td>Max Brown</td>
</tr>
<tr>
<td>1.1</td>
<td>16 April 2013</td>
<td>Draft update</td>
<td>Tom Grahamslaw</td>
</tr>
<tr>
<td>1.2</td>
<td>22 July 2013</td>
<td>Draft second update</td>
<td>Tom Grahamslaw</td>
</tr>
<tr>
<td>2.0</td>
<td>16 August 2013</td>
<td>Final</td>
<td>Tom Grahamslaw</td>
</tr>
</tbody>
</table>

Reviewer list

<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andrew Alcorn</td>
<td>NetServ Safety and Risk Governance Team</td>
</tr>
<tr>
<td>Max Brown</td>
<td>Design Workstream, NetServ Project Sponsor</td>
</tr>
<tr>
<td>Iain Candlish</td>
<td>MM Programme CDM Coordinator</td>
</tr>
<tr>
<td>Managed Roads Programme Board (MRPB)</td>
<td>MM-ALR governance</td>
</tr>
<tr>
<td>National Safety Control Review Group (NSCRG)</td>
<td>MM-ALR safety governance</td>
</tr>
</tbody>
</table>

The original format of this document is copyright to the Highways Agency.
<table>
<thead>
<tr>
<th>Signature</th>
<th>For</th>
<th>Sign-Off Statement</th>
</tr>
</thead>
</table>
| **Name: Lucy Wickham**
Date: 13/08/2013
Signature: ![Signature](Lucy.pdf)
MM-ALR Project Consultant (Project Director) | I confirm that:
- the scope and content of the attached deliverable are correct and compiled with reasonable skill and care
- the attached deliverable complies with the requirements of the relevant Work Instructions for Project Safety Risk Management (PSRM), in as far as is reasonably practicable |
| **Name: Max Brown**
Date: 14/08/2013
Signature: ![Signature](Max.pdf)
MM-ALR Design Workstream (NetServ Project Sponsor) | I endorse confirmation that:
- the scope and content of the attached deliverable are correct and fit for purpose given the current stage of the project.
- the attached deliverable complies with the requirements of the relevant Work Instructions for Project Safety Risk Management. |
| **Name: Andrew Page-Dove**
Date: 14/08/2013
Signature: ![Signature](Andrew.pdf)
Network Delivery & Development (MM-ALR Senior User) | I accept that in relation to the project operating regime the scope and content of the attached deliverable are correct and fit for purpose given the current stage of the project. |
| **Name: Dave Stones**
Date: 14/08/2013
Signature: ![Signature](Dave.pdf)
Traffic Management (MM-ALR Senior User) | I accept that in relation to the project operating regime the scope and content of the attached deliverable are correct and fit for purpose given the current stage of the project. |
| **Name: Brian Barton**
Date: 14/08/2013
Signature: ![Signature](Brian.pdf)
Network Services (Managed Motorways Group Manager) | I approve that in relation to project safety:
- the scope and content of the attached deliverable are correct and fit for purpose given the current stage of the project
- the attached deliverable complies with the requirements of the relevant Work Instructions for Project Safety Risk Management. |
| **Name: Mike Wilson**
Date: 15/08/2013
Signature: ![Signature](Mike.pdf)
MM-ALR Senior Responsible Owner | I approve that in relation to project safety:
- the attached Project Safety Deliverable complies with the requirements of the relevant Work Instructions for Project Safety Risk Management. |
This page is intentionally left blank.
Table of contents

Executive summary ... 7

1 Introduction.. 11
 1.1 Background... 11
 1.2 MM-ALR and key challenges.. 11
 1.3 Use of statistics... 16
 1.4 Assumptions ... 17
 1.5 Document structure ... 18

2 Contributing factors ... 21
 2.1 Existing processes and procedures... 21

3 Achieving the safety objectives... 23
 3.1 Goal-structured notation (GSN).. 23
 3.2 Link with other safety documents .. 24

4 Has the safety objective been agreed and is it likely to be achieved? .. 25
 4.1 Safety baseline and objectives for MM-ALR.. 25
 4.2 Methodology for demonstrating meeting of safety objective.. 26
 4.3 Demonstration of meeting the safety objective... 29

5 Has a safety management process been followed?.. 31
 5.1 Project safety management system ... 31
 5.2 Competence of resources .. 32
 5.3 Approval process ... 33

6 Have hazards been well managed? ... 35
 6.1 Risk assessment methodology, hazard log and set of hazards .. 35
 6.2 Analysis of hazards – evidence gathering and assessment ... 36
 6.3 Safety requirements ... 43

7 Conclusions ... 47

8 References .. 49

Appendix A: Glossary of terms and abbreviations ... 50

Appendix B: GSN diagram for the MM-ALR safety report ... 52

Appendix C: Risk assessment methodology .. 53
 C.1 Index values used for event frequency and state likelihood... 54
 C.2 Index values used for event probability and state rate ... 57
 C.3 Index values used for severity ... 58
 C.4 Index values used for ‘after’ scoring values ... 59
This page is intentionally left blank.
Executive summary

Introduction
This document is the generic safety report for managed motorways all lane running (MM-ALR). The purpose of this document is to demonstrate that the appropriate level of safety management has been undertaken to assess the expected safety performance for the implementation of MM-ALR.

The key challenges for MM-ALR are:

- Road user safety
- Road worker safety
- Adequate guidance that produces the required level of compliant driver behaviour
- Operating and maintenance regimes (including managing emergencies)
- Mitigations for top scoring hazards
- Managing incidents

Conclusion
The information presented in this report demonstrates that:

A safety objective has been set for MM-ALR schemes and is likely to be achieved

A generic safety baseline and generic safety objectives have been agreed for MM-ALR schemes. These cover road users and road workers.

Road user safety baseline:

Validated STATS19 personal injury accident (PIA) data covering the scheme extent, including entry and exit slips is used to determine the road user safety baseline. The road user safety baseline used to demonstrate meeting the safety objective must be the number (averaged per annum) of all fatal and weighted injury (FWI) casualties and the rate of FWIs per billion vehicle miles per annum averaged for the three years prior to the installation of any element of MM-ALR.

FWI is defined as: \((\text{number of fatalities}) + 0.1 \times (\text{number of serious casualties}) + 0.01 \times (\text{number of slight casualties})\).

For the purposes of this report, the safety baseline assumes prior to the implementation of any element of managed motorways (MM) (including motorway incident detection and automatic signalling (MIDAS)).
Road user safety objective:

A MM-ALR scheme will satisfy the road user safety objective if it is demonstrated for a period of three years after becoming fully operational that:

- The average number of FWI casualties per year is no more than the safety baseline
- The rate of FWIs per billion vehicle miles per annum is no more than the safety baseline
- No population (e.g. car drivers, pedestrians, HGV drivers and motorcyclists) is disproportionately adversely affected in terms of safety and risk to each population remains tolerable. (Where different forms of managed motorways are proposed on opposing carriageways, for example, controlled motorways and MM-ALR, then the road user benefits should be considered per link per carriageway)

Road worker safety:

There is no numerical objective or target for road worker accidents on MM-ALR schemes and the risk must be managed in accordance with the ‘so far as is reasonably practicable (SFAIRP)’ principle. The Highways Agency's “Aiming for Zero (AfZ)” strategy must be applied for further positive action to reduce the risk to road workers during maintenance and operation. One part of the strategy aims to eliminate all fatalities and serious injuries to road workers maintaining the Highways Agency’s road network.

The methodology used to demonstrate whether the safety objective can be achieved is based on the methodology used successfully for the M42 J3a to J7 managed motorways (M42 MM) and Birmingham Box Managed Motorways Phase 1&2 (BBMM1&2) schemes. Results from the “M42 MM monitoring and evaluation three year safety review” [2] have been used to provide some evidential basis for the likely safety performance of the MM-ALR generic scheme. Further evidence has been provided from a review of the safety performance of the all purpose trunk road (APTR) network [7] and a review of the likely impact of MM-ALR on driver compliance and understanding [8].

Achieving the safety objective:

The “Demonstration of meeting safety objective (DMSO) report” [5] (based on the use of a MM-ALR generic hazard log) shows that the safety objective for road users is likely to be achieved and takes account of:

- A reduction in risk for a significant number (14) of the highest scoring existing motorway hazards (19), due to a controlled environment being provided through a combination of regularly spaced mandatory speed signals, speed enforcement, and full closed circuit television (CCTV) coverage
- One highest scoring (i.e. E08/S08 and above) new MM hazard is introduced, hazard ‘H152 - Vehicle recovered from emergency refuge area (ERA)’ (E08)
• One high-scoring existing hazard increases in risk, hazard ‘H135 - Vehicle stops in running lane – off peak’ (increases from E07.81 to E08.31)

• The impact of the new highest scoring hazard and increase to one existing highest scoring hazard is expected to be countered by the decrease in risk of existing highest scoring hazards

• Calculations show that the total score for ‘after’ represents approximately a reduction of risk of 18% when compared with the safety baseline.

With regard to meeting the safety objective for specific users, this report demonstrates that MM-ALR reduces the risk of a number of existing hazards, increases a number of existing hazards and introduces a number of new hazards for these groups. On balance achieving the safety objective is likely to be achieved for car drivers, pedestrians, motorcyclists, HGV drivers, emergency services, private recovery organisations, and disabled drivers or passengers.

With regard to maintenance workers, since the publication of IAN161/12, improvements have been identified leading to a reduction in the frequency of maintenance activities. Thus it can be demonstrated with greater confidence that the safety objective is likely to be achieved and the risk managed so far as is reasonably practicable. The Highway Agency’s MM-ALR Meeting the Road Worker Safety Objective Task and Finish group has undertaken further review of an ERIC assessment to reduce maintenance activities that reside at Highways Agency programme level. This work has been reflected in the development of the road worker safety assessment tool.

Further work has also be carried out in assessing risk to ORR, especially in relation to TOS procedures and activities undertaken by the NVRM, finalisation of this work is at an advanced stage and indications are that the risk to this worker group can be managed SFAIRP.

An appropriate Safety Management Process has been selected for MM-ALR and has been applied

• MM-ALR has been classified as ‘Type B’. This represents a ‘medium’ level of safety management

• The assessment has been carried out by persons with the required level of competency.

Hazards are well managed

• An appropriate risk assessment methodology consistent with the M42 MM and BB MM 1&2 schemes, IAN139/11 [6], and GD04/12 [9] has been used

• The MM generic hazard log has been used as the starting point to develop a list of hazards applicable to MM-ALR

• All identified scheme hazards have then been assessed and the risk level they present has been determined
• Evidence has been used where relevant to support the hazard assessment
• A list of appropriate safety requirements has been produced.

Summary

It can be concluded from the information summarised in this generic safety report that the objective to “demonstrate that the appropriate level of safety management has been undertaken to assess the expected safety outcome for the implementation of MM-ALR” has been met. For road workers it can be demonstrated that the safety objective of SFAIRP can be achieved.
1 Introduction

1.1 Background

In January 2009 the Government announced that hard shoulder running (HSR) would be extended to some of the busiest parts of the Highways Agency’s major road network and this initiated the managed motorways (MM) programme. The MM concept built upon the success of the M42 Active Traffic Management Pilot (M42 MM) scheme. IAN 111/09 “Managed Motorways Implementation Guidance – Hard Shoulder Running (MM-HSR)” [3] and IAN112/08 “Managed Motorways Implementation Guidance – Through Junction Hard Shoulder Running” [4] provide designers with guidance on the implementation of managed motorways with dynamic hard shoulder running and the option for including through junction hard shoulder running.

Further knowledge and experience of operating managed motorways schemes indicated that there was scope to further reduce capital and operating costs, whilst meeting congestion objectives and not reducing safety performance compared to the baseline.

Managed motorways all lane running (MM-ALR) [1] has been developed by the Highways Agency to enable a reduction in the amount of infrastructure necessary for a managed motorway scheme, resulting in significant cost savings without a reduction in safety. Permanent conversion of the hard shoulder to a running lane along with the ability to dynamically control mandatory speed limits is a key aspect of MM-ALR. This removes the complex operating regime of opening and closing a dynamic hard shoulder.

Varying safety studies have been undertaken on each traffic management element to determine their impact on the safety of the motorway network. When establishing the impact of MM on safety a number of items need to be defined:

- Safety baseline – against which the safety objective will be measured
- Safety objective – the level of safety that the scheme is aiming to achieve
- Level of safety benefit / impact achievable and mitigation measures required.

This report summarises the safety impact (beneficial and detrimental) of one version of MM known as MM-ALR.

1.2 MM-ALR and key challenges

MM–ALR is described in Design Manual for Roads and Bridges (DMRB) IAN 161/13 “Managed Motorway – All lanes running” [1]. The outline design for MM is shown in Figure 1-1. Key features include:

a. The hard shoulder on the main line is permanently converted to a controlled running lane. This includes the main line intra-junction subject to assessment
b. Refuge areas provided at a maximum of 2500m intervals. Refuge areas may either be bespoke facilities (an emergency refuge area (ERA)) or converted from an existing facility, for example a wide load bay, a motorway service area (MSA), the hard shoulder on an exit slip/link road or hard shoulder intra-junction where there is no through junction running

c. Variable mandatory speed limits (VMSL)

d. Above lane specific signalling only provided at the 'gateway signals and variable message sign (VMS)' location, where necessary at intermediate locations and where the number of running lanes exceed four. At all other signal locations, verge mounted carriageway signalling must be provided

e. Driver information, including mandatory speed limits, are provided at intervals not less than 600m (relaxed on short links) and not exceeding 1500m

f. Queue protection system

g. Full low-light pan-tilt-zoom (PTZ) CCTV coverage

h. Emergency roadside telephones (ERT) are only provided in refuge areas (however not provided in MSA or on slip roads)

i. A central reserve rigid concrete barrier (RCB) should be provided on all MM-ALR schemes in accordance with TD 19 unless the road worker safety objective can be met by alternative mitigations.
Illustrative drawing of managed motorways all lane running

Figure 1-1: Illustrative drawing of MM-ALR

Note: The mounting options for signs and signals are shown for illustrative purposes only.

MM-ALR Additional signing required:

As per existing standards:
- Count-down markers
- Marker posts
- Driver location signs

As described in this IAN:
- No HS for x sign
- ERT advance signing
- ERA signing

The above signs have not been shown on this figure for clarity.
There are a number of key differences between MM-ALR (IAN161/13) and the MM-HSR (IAN111/09) design [1] [3]. These are presented in Table 1-1.

<table>
<thead>
<tr>
<th>IAN 111/09 compliant MM scheme</th>
<th>IAN 161/13 compliant MM scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic use of the hard shoulder with opening and closing of the hard shoulder for congestion management.</td>
<td>Permanent conversion of the hard shoulder into a running lane with through junction running.</td>
</tr>
<tr>
<td>Driver information provided through:</td>
<td>Driver information provided through:</td>
</tr>
<tr>
<td>• Portal gantries positioned at a nominal spacing of 800m, capable of providing above lane specific signalling and supporting information (VMS)</td>
<td>• Portal gantries positioned near the start of each link, capable of providing above lane specific signalling and supporting information (VMS); and</td>
</tr>
<tr>
<td>• • Single VMS at a maximum spacing of 1500m capable of providing the same types of information but using pictograms etc.</td>
<td>• Supplementary above lane specific signalling may be provided on longer links</td>
</tr>
<tr>
<td>ERA at nominal 800m spacing – usually associated with gantries.</td>
<td>Refuges at up to 2500m intervals.</td>
</tr>
<tr>
<td>Overhead direction signs mounted on gantries and cantilevers.</td>
<td>Cantilever/post mounted signs. Portal gantry mounted direction signs only used to aid clarity in immediate vicinity of junctions or where complexity of road layout indicates that overhead direction signs provide greater clarity.</td>
</tr>
</tbody>
</table>

Table 1-1: Key differences between an IAN 111/09 compliant MM scheme and the ‘MM–ALR’ design

The challenges for MM-ALR include:

- Road user safety
- Road worker safety
- Adequate guidance that produces the required level of compliant driver behaviour
- Operating and maintenance regimes (including managing emergencies)
- Mitigations for top scoring hazards
- Managing incidents

1.2.1 Tolerable risk

The level of risk that would be deemed to be tolerable for a package of measures such as MM-ALR depends on a number of factors, which are discussed below.

1.2.2 Overall level of risk

The Road Traffic Act places a duty on highway authorities to consider the safety performance of their network, while the Highways Act places a duty to maintain the public
highway. For a well performing motorway network the Highways Agency must as a minimum maintain the current level of safety. The Highways Agency also needs to consider different populations of road users and ensure check that no population (e.g. car drivers, pedestrians, HGV drivers and motorcyclists) is disproportionately adversely affected in terms of safety and risk to each population remains tolerable. In addition, the Highways Agency seeks to reduce the absolute number of casualties on its network to support the strategic framework for road safety, so needs to look for risk reduction opportunities across the network.

1.2.3 Balancing risk

In general for managed motorways as long as the Highways Agency lower or maintain the global level of risk for road users they may allow the risk from some hazards to increase provided this increase in risk is considered tolerable (i.e. the globally at least equivalent concept (GALE)). This was accepted as a requirement on the M42 MM scheme and is also supported in GD04/12. So if an increase in the risk from one hazard can be balanced by a commensurate decrease in the risk of another hazard, then this has been deemed tolerable. However such a balancing process will always require some caution, so that the decrease in the second risk will need to be larger than the increase in the first – i.e. over time risk as a whole will decrease so as to ensure the appropriate balance is always achieved.

1.2.4 Not reducing risk

Risk reduction normally involves expenditure and effort and there may be different risk reduction options that require different levels of cost and the effort. It is common practice to review the cost benefit of the different options and select those that show the optimum cost benefit. That said this cannot be done in isolation as other factors need to be taken into account, such as the tolerable level of risks. In some cases a minimum degree of risk reduction might be considered necessary to meet the long term safety aims. Also risk tolerability may require that a minimum degree of risk reduction for a particular hazard is deemed appropriate.

1.2.5 Good practice

Where good practice exists in risk reduction then there is a duty of care obligation to apply this good practice. Whilst approaches and initiatives introduced by pilot or trial schemes, e.g. the hard shoulder CCTV detection system used on the M42 MM scheme, may not be considered to be sustainable practice, they do set a potential benchmark against which any future scheme should be evaluated. Other elements of MM e.g. RCB have become good practice so a decision not to implement them would require significant review and justification.

1.2.6 Allowing total risk to increase

While not common, allowing an increase in total risk has occurred in other transport sectors in the past; where non-safety benefits of the risk increase have significantly outweighed the safety disadvantages. Where such risk increases have occurred very substantial research has been undertaken to determine both the increase in risk and the benefits gained so as to
be certain that the balance is appropriate. For example, no night time use of train horns on pedestrian footpath crossings increases risk to pedestrians, but it reduces the noise pollution and nuisance to neighbours\(^1\).

System effects, versus local benefits

There may be occasions when risk mitigation has wider effects than just the scheme being considered. In these cases the safety benefits should only be evaluated for the scheme. The wider system benefits cannot be used to justify the tolerable risk criteria for the scheme. That said, the system benefits or disadvantage should be considered in making a risk mitigation decision. For example, implementing a unique layout for a road junction may have safety benefits locally but create disadvantages regionally.

1.2.7 Deciding on tolerable risk

The level of risk deemed tolerable for a scheme may therefore need to take into account a number of criteria:

- A maximum level of risk that is deemed tolerable for the section of road. This might consist of a percentage of the overall network or regional risk or an absolute criterion in terms of road users fatal and weighted injury (FWI) casualties
- Levels of performance for risk mitigation systems that are deemed to be a minimum for the duty of care to be met
- Good practice that is available for mitigating the risk
- The cost benefit of different options for risk mitigation, as long as they deliver a risk level lower than the maximum tolerable risk and meet the minimum performance requirements
- The overall effects of the actions taken. For example, a national campaign to reduce stoppages on the hard shoulder would have benefits to the whole network, not just a dynamic hard shoulder scheme. While the network effects should not be taken into account in cost benefit for the scheme they may help show that the Highways Agency has adequately considered / discharged its duty of care.

1.3 Use of statistics

In compiling this generic safety report the use relevant statistical information was used when assessing the level of safety achievable. The outputs of statistical analyses presented in previous safety reports have been incorporated where relevant. A degree of caution should therefore be used when interpreting the figures presented within this report. When using these figures no additional statistical analysis has been undertaken nor has any verification of the calculations been sought. Where used, these figures are referenced back

\(^1\) The extensive research on this subject is available on the web site of the Rail Safety and Standards Board (RSSB).
to the source document. Whilst the figures are useful in establishing the quantitative impact on safety it should be noted that the degree of confidence in each of the figures will vary due to differences in the quality of data used and also the period over which the data was collected.

The figures quoted should therefore be considered a guide as to what the likely safety improvement will be through the introduction of MM-ALR. In reality the actual safety improvement achieved by MM-ALR is dependent on the existing environment, and as such the safety improvement achieved may be more or less than the figures presented in this generic safety report.

1.4 Assumptions

The detailed design of a MM-ALR scheme is dependent on the characteristics of the stretch of motorway under consideration. Topography, number of junctions, distance between junctions, width of hard shoulder, clearance to structures, drainage construction are a few of the existing motorway characteristics that influence the design specification of any proposed MM scheme. Similarly the characteristics of the existing motorway will also affect the level of safety performance delivered by a scheme.

Each stretch of motorway needs to be considered separately when defining the details of an MM-ALR scheme including:

- An analysis of main carriageway and merge/diverging traffic flows – in order to determine the optimum traffic solution for the stretch of motorway over the design life of the scheme
- An analysis of the features of each location to determine the most appropriate operational speed

This report is based on the following key assumptions:

- The Highways Agency accepted principle of globally at least equivalent (GALE) as a way of measuring the safety performance of a managed motorway improvement scheme for road users
- The GALE principle has also been applied to specific links of the network. Applying the GALE principle to each link means that it is not acceptable to balance an increased risk for one link by reducing it in another
- No road user (e.g. car drivers, pedestrians, HGV drivers and motorcyclists) is disproportionately adversely affected in terms of safety and risk to each population remains tolerable
- The Highways Agency accepts that risk to workers must be managed so far as is reasonably practicable (SFAIRP) – as required under the Health and Safety at Work,
etc Act (1974). This includes, for example, traffic officers and maintainers\(^2\) but not private vehicle recovery operators (who are licensed road users)

- The Highways Agency accepts that they may trade off the safety benefits of one MM element against the safety disadvantages of another MM element within a scheme (e.g. managed motorways with through junction running (TJR)) so as to achieve the overall operational benefit

- The safety report requirements will need to be reviewed and updated to state all the principles that will need to be applied in order that the safety of the schemes is achieved. A project will still be required to demonstrate that the overall effects of changes / mitigations and operating principles are acceptable: to make sure that the sum of many small changes does not equal a major negative change to the safety that will be delivered.

1.5 Document structure

This report is structured as follows:

- **Chapter 1:** Introduction - details the background, purpose and scope of this report
- **Chapter 2:** Contributing factors - explores the existing mandatory and Highways Agency processes and procedures that contribute to the delivery of safety on a scheme. These include road safety audits (RSA) and the Construction (Design & Management) Regulations 2007 (CDM 2007)
- **Chapter 3:** Achieving the safety objectives - sets out the approach to demonstrating that the safety objective can be achieved
- **Chapter 4:** Has the safety objective been agreed and is it likely to be achieved? - sets out the safety objective and safety baseline for MM-ALR, the methodology used to demonstrate that the safety objective can be achieved, and the demonstration that the safety objective is likely to be achieved
- **Chapter 5:** Has a safety management process been followed? – describes how an appropriate safety management system (SMS) has been selected and applied, and shows that the project has been resourced with competent people for the safety work, a robust safety approvals process is in place, there are plans in place to monitor project safety performance, and that the safety report will be handed over to the Highways Agency for operation and maintenance
- **Chapter 6:** Have hazards been well managed? – demonstrates that an appropriate risk assessment methodology, hazard log and set of hazards have been applied, all scheme hazards have been analysed, and how project safety requirements will be identified to meet the project design

\(^2\) The term As Low As Reasonably Practicable (ALARP) is applied particularly where risk can, in principle, be quantified. Because of this link to quantification, ALARP rather than SFAIRP is the term generally applied in a number of sectors – including Highways – when discussing risk management and risk philosophy.
• Chapter 7: Conclusions
• Chapter 8: References
• Appendices: Glossary of terms and abbreviations, goal-structured notation (GSN) for MM-ALR safety report, risk assessment methodology.
This page is intentionally left blank.
2 Contributing factors

2.1 Existing processes and procedures

The purpose of this chapter is to present the processes and procedures that are currently in place that are intended to support the implementation of ‘safe’ schemes on the Highways Agency network. These are presented to demonstrate that the safety risk associated with a scheme is considered at a number of stages during the development of a scheme. Whether implicitly or explicitly, they drive the need to develop appropriate safety objectives (and baselines) for MM schemes.

2.1.1 Road safety audits

According to DMRB HD19/03, RSA is defined as:

“The evaluation of Highway Improvement Schemes during design and at the end of construction (preferably before the scheme is open to traffic) to identify potential road safety problems that may affect any users of the highway and to suggest measures to eliminate or mitigate those problems. The audit process includes the accident monitoring of Highway Improvement Schemes to identify any road safety problems that may occur after opening. This Stage 4 Audit will include the analysis and reporting of 12 and 36 months of completed personal injury accident data from when the scheme became operational.”

The audit comprises four stages:

- Stage 1: Completion of preliminary design
- Stage 2: Completion of detailed design
- Stage 3: Completion of construction
- Stage 4: Monitoring

The implication of applying the RSA process is that individually, each scheme will deliver a certain level of safety performance. This depends upon the type of scheme implemented, for example whether or not it is a safety or a congestion management scheme.

2.1.2 Construction (design and management) regulations 2007

The CDM 2007 came into force on 6 April 2007. The CDM Regulations aim to ensure that construction projects are safe to build, safe to use and safe to maintain.

In the context of MM schemes, CDM provides a framework by which worker safety (both during construction and subsequent maintenance) can be maintained. Central to CDM is the concept of managing risk SFAIRP.

2.1.3 Project safety risk management

The Highways Agency implements a safety management approach called project safety risk management for all its MM schemes (GD04/12 [9] and IAN 139/11) [6].
Highways Agency projects have traditionally used a prescriptive approach to demonstrating safety, relying on adherence to detailed standards. These standards are based on research, pilot activities and many years of experience, thus capturing the necessary risk mitigation properties. However, this approach is becoming less appropriate for the more complex and innovative systems now being installed and the need has been recognised for more formal safety management on highways projects.

The approach, developed from the management of safety on the M42 MM scheme, provides a framework for managing road user and road worker risk so that an appropriate level of safety management is applied. This approach takes into account the size and complexity of the project to determine, amongst other factors, an appropriate safety baseline and safety objectives.

GD04/12 [10] provides a framework for safety risk assessment and control and updates and clarifies requirements and guidance for addressing safety risks. A key requirement of this standard is that appropriate safety risk assessment, evaluation and management is undertaken to inform all activities, projects and decisions. This includes ensuring that the safety risk impacts for different populations that the Highways Agency has a responsibility for, along with their safety risk exposure and safety risk tolerance, are taken into account.

The approach set out in GD04/12 allows safety risk tolerance, balancing judgments, and benefits versus costs to be examined, while taking account of available budgets and other duties when considering safety measures. This is consistent with Health and Safety Executive (HSE) guidance for ‘sensible safety risk management’.

GD04/12 also requires that documentation is kept which evidences the decision making process for hazard and risk assessments and the identification and implementation of risk mitigation measures.
3 Achieving the safety objectives

The purpose of this document is to evaluate whether MM-ALR, based on existing evidence, is likely to achieve the safety objectives that have been agreed by the Highways Agency.

3.1 Goal-structured notation (GSN)

Goal-structured notation (GSN) has been used to structure the safety arguments in a graphical manner. A GSN diagram shows how goals are broken down into sub-goals and eventually supported by evidence, whilst making clear the strategies adopted to meet the goals and the context in which goals are stated. These four entities are depicted by the following shapes.

- Goal or sub-goal
- Evidence
- Strategy
- Context

The GSN diagram for MM-ALR is supplied as Appendix B of this document. Colour is used to denote progress with goals as shown in Figure 3-1.

Figure 3-1: Key to progress with GSN goals

Figure 3-2 shows an extract from the GSN diagram. It identifies three main strands to the safety argument, which are considered in chapters 4, 5 and 6.
3.2 Link with other safety documents

There are three documents that should be read in conjunction with this document:

- Demonstration of meeting safety objective (DMSO) report [5] provides the detail on that subject
- MM-ALR provision of adequate guidance review [8] provides information about whether or not MM-ALR will provide enough guidance to drivers so that the safety benefits of a controlled environment can be achieved
4 Has the safety objective been agreed and is it likely to be achieved?

This chapter demonstrates that:

- The safety baseline for the project has been agreed
- The safety objectives have been agreed for both road users and road workers
- Achievement of the safety objectives can be demonstrated.

The structure of the argument is illustrated in the GSN diagram in Figure 4-1 below.

Figure 4-1: Extract of GSN diagram showing how it is demonstrated that a safety objective has been agreed and is likely to be achieved

4.1 Safety baseline and objectives for MM-ALR

A generic safety baseline and generic safety objectives have been agreed for MM-ALR schemes.

4.1.1 Safety baseline

Validated STATS19 personal injury accident (PIA) data covering the scheme extent, including entry and exit slips must be used to determine the road user safety baseline. The road user safety baseline used to demonstrate meeting the safety objective must be the number (averaged per annum) of all fatal and weighted injury (FWI) casualties and the rate of FWIs per billion vehicle miles per annum averaged for the three years prior to the installation of any element of MM-ALR.

FWI is defined as: (number of fatalities) + 0.1 x (number of serious casualties) + 0.01 x (number of slight casualties).
If more than 50% of the main line carriageway by length has motorway incident detection and automatic signalling (MIDAS) installed, the road user safety baseline must be based on the recorded accident rate before installation of MIDAS. If this information is not available or older than 5 years, the current three year average rate must be increased by 10% to account for MIDAS. It is generally accepted that MIDAS reduces accident rates by between 9% and 13%, therefore an addition of 10% should be used for this purpose.

4.1.2 Road user safety objective
A MM-ALR scheme will satisfy the road user safety objective if it is demonstrated for a period of three years after becoming fully operational that:

- The average number of FWI casualties per year is no more than the safety baseline
- The rate of FWIs per billion vehicle miles per annum is no more than the safety baseline
- For each link, no population (e.g. car drivers, pedestrians, HGV drivers and motorcyclists) is disproportionately adversely affected in terms of safety and risk to each population remains tolerable. (Where different forms of managed motorways are proposed on opposing carriageways, for example, controlled motorways and MM-ALR, then the road user benefits should be considered per link per carriageway)

4.1.3 Road worker safety objective
There is no numerical objective or target for road worker accidents on MM-ALR schemes and the risk must be managed in accordance with the SFAIRP principle. This is a legal requirement. The Highways Agency's AfZ strategy must be applied for further positive action to reduce the risk to road workers during maintenance and operation. One part of the strategy aims to eliminate all fatalities and serious injuries to road workers maintaining the Highways Agency's road network.

4.2 Methodology for demonstrating meeting of safety objective
This sub-section summarises the methodology for demonstrating the meeting of the safety objective. It initially considers meeting the safety objective for all users and then considers the impact on specific user groups.

4.2.1 Meeting of safety objective (for all users)
The (generic) methodology is documented in IAN 139/11 [6]. The foundation for the demonstration of meeting the safety objective is the risk assessment methodology which is documented in Appendix C.

The demonstration involves a qualitative and semi-quantitative risk comparison of MM-ALR with the safety baseline (a D3M without implementation of any element of managed motorways, i.e. without MIDAS).
The flowchart in Figure 4-2 summarises the process followed:

- **Decide on relevant hazards**: (From the generic managed motorways hazard log)
- **Determine which assumptions are required**: (Base data—the ‘before’ case)
 - Source evidence/data and calculate the frequency and likelihood of relevant hazards
- **Hazard analysis**
- **Existing hazards**: Populate ‘before’ hazard scores in the hazard log
- **‘After’ hazards**: Calculate the ‘after’ frequency, probability, and severity scores and document the basis of these scores for new hazards
- **Review and verify the hazard scores**
- **Calculate the change in risk between the ‘before’ and ‘after’ scenarios (and perform sensitivity analysis) to inform and shape mitigation strategy**
- **‘After’ hazards**: Populate ‘after’ hazard scores in the hazard log
- **‘After’ hazards**: Determine how the risk will change for existing hazards
- **‘After’ hazards**: Populate the change in scores for existing hazards in the before to after scenario
- **Demonstration of meeting the safety objective**

Figure 4-2 Process for demonstrating meeting of safety objective

4.2.2 Assessment of safety impact for specific road user groups

This report considers the impact of the scheme on the safety of all road users, analysis of the impact upon specific road user groups has been detailed in the DMSO report [5], covering the following groups:
Users

- Pedestrians
- Motorcyclists
- HGV drivers
- Disabled drivers or passengers
- Private recovery organisations
- Emergency services

Workers

- On road resources (ORR) (inc. the Traffic Officer Service (TOS) and National Vehicle Recovery Manager (NVRM))
- Maintenance workers

There is a separate safety objective for road workers (see section 4.1.3), ORR and maintenance workers (shown in bold), so it is necessary to particularly focus on and understand how the implementation of MM-ALR will affect these two user groups. The NVRM is included in this analysis due to the direct employment by the Highways Agency and the statutory obligation to meet the objective for this worker group.

In summary, the methodology involved the following steps:

- The MM-ALR hazard log was examined for all hazards relevant to the specific user group in question
- The ‘before and after’ scores (i.e. the difference between MM-ALR and the baseline) were reviewed as they could be different for a specific user group.

Finally the hazards with the largest contributing scores were examined to see whether the safety of that specific user group was improved, or not. This was done by:

- Checking whether the highest risk hazards that are relevant to the baseline have a different risk under MM-ALR
- Checking whether this is sufficient to counterbalance the risk of any new hazards introduced by MM-ALR.

The conclusion for each user group is presented as a qualitative proposition. The hazard assessment is not suited to a quantitative approach as explained in chapter 4.2.3 below.

4.2.3 Use of quantitative assessments

The demonstration of meeting the safety objective is based upon a qualitative risk comparison; a semi-quantitative consideration of the risk change based upon the outputs of the hazard log review has also been included. Care must be taken not to assume that the numerical output represents a higher degree of precision than is possible given the limited accuracy and availability of input data. To avoid such misinterpretation, this document uses the numerical calculations as a tool for guiding the construction of a qualitative argument.
4.3 Demonstration of meeting the safety objective

4.3.1 Achievement of safety objective for all road users

The DMSO report [5] demonstrates that the design is likely to meet the safety objective and takes account of:

- A reduction in risk for a significant number (14) of the highest scoring existing motorway hazards (19), due to a controlled environment being provided through a combination of regularly spaced mandatory speed signals, speed enforcement, and full CCTV coverage
- One highest scoring (i.e. E08/S08 and above) new MM hazard is introduced, hazard ‘H152 - Vehicle recovered from emergency refuge area (ERA)’ (E08)
- One high-scoring existing hazard increases in risk, hazard ‘H135 - Vehicle stops in running lane – off peak’ (increases from E07.81 to E08.31)
- The impact of the new highest scoring hazard and increase to one existing highest scoring hazard is expected to be countered by the decrease in risk of existing highest scoring hazards
- Calculations show that the total score for ‘after’ represents approximately a reduction of risk of 18% when compared with the safety baseline.

Further details are provided in the DMSO report [5].

4.3.2 Achievement of safety objective for specific road user groups

With regard to meeting the safety objective for specific users, this report demonstrates that MM-ALR reduces the risk of a number of existing hazards, increases a number of existing hazards and introduces a number of new hazards for these groups. On balance it can be shown that for each of the road user groups considered (car drivers, motorcyclists, HGV drivers, emergency services, private recovery organisations, and disabled drivers or passengers), the safety objective is likely to be achieved because the reduction in risk for the existing motorway hazards outweighs the increase in risk from the introduction of new hazards related to MM-ALR.

4.3.3 Achievement of safety objective for specific road worker groups

With regard to maintenance workers, since the publication of IAN161/12, improvements have been identified leading to a reduction in the frequency of maintenance activities. The safety objective can be achieved, with the risk managed SFAIRP.

The traffic officer service (TOS) are finalising the development of detailed working procedures for operating MM-ALR that have been based on the experience of operating existing sections of motorway and APTR with ALR. These procedures seek to reduce the risks to the TOS to be as low as reasonably practicable. Thus it can be demonstrated that the safety objective is likely to be achieved and the risk managed SFAIRP.

Further details are provided in the DMSO report [5].
This page is intentionally left blank.
5 Has a safety management process been followed?

This chapter demonstrates that:

- An appropriate safety management system (SMS) has been selected and applied
- The project has been resourced with competent people to carry out the safety work
- A robust safety approvals process is in place.

The structure of the argument is illustrated in the GSN diagram in Figure 5-1 below.

![Figure 5-1: Extract of GSN diagram showing how it is demonstrated that an appropriate and robust safety management process has been followed](image)

5.1 Project safety management system

5.1.1 Selection of project safety management system

IAN139/11 [6] describes the process by which the SMS is selected for an MM project. It advises that the default position for all MM projects is that they will require at least a Type B SMS. For MM-ALR the assessment agrees with the advice provided by the Highways Agency that MM schemes require a Type B SMS. Table 5-1 provides a summary.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Results for project</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Stakeholder interest</td>
<td>Type C. A number of key stakeholders are involved</td>
</tr>
<tr>
<td></td>
<td>Key stakeholders include:</td>
</tr>
<tr>
<td></td>
<td>– Highways Agency Network Delivery and Development (NDD) and Traffic Management Division (TMD)</td>
</tr>
<tr>
<td></td>
<td>– Traffic officer service</td>
</tr>
<tr>
<td></td>
<td>– Maintenance operatives</td>
</tr>
</tbody>
</table>
2. Operational experience

Type B. Experience of controlled all lanes running (CALR) has been achieved on short sections of existing motorway – usually where there is some form of constraint, i.e. hard shoulder discontinuity on M25 Controlled Motorways links. Multi-lane running without a hard shoulder exists on some A-roads (for example sections of the A3, A23 and A45) and some sections of motorway (for example M6 J7-8E). The Controlled Motorways element of the design has also been used on the M25, M42 MM scheme and BBMM1&2 schemes.

3. Technology

Type B. The technology is used on several sections of motorway, e.g. M25 J10 to J16, M42 MM and BBMM1&2 schemes.

4. Standards and legislation

Type B. Design requirements for MM-ALR are available through IAN 161/13

5. Impact on Organisation

Type B/C. The role of control centres will need to be expanded to cover the operation of this regime (although this is not considered to be as significant for MM-ALR as it would be for HSR – no hard shoulder opening checks). At a local level changes are expected to be required and training/briefings will be required for relevant staff to inform them of the change.

The impact on the Highways Agency as a whole is not considered to be Type C as much of the impact on procedures has already occurred as a result of the M42 MM and BBMM1&2 schemes. Therefore, potentially high impact on a local level, but medium impact on the Highways Agency as a whole.

6. Project Scale

Type B. Moderate lengths of the Highways Agency motorway network are likely to be affected.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Results for project</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Police</td>
</tr>
<tr>
<td></td>
<td>Emergency services (e.g. fire service, ambulance)</td>
</tr>
<tr>
<td></td>
<td>Vehicle recovery organisations</td>
</tr>
</tbody>
</table>

Table 5-1: Reasoning for classification decisions for MM-ALR

5.2 Competence of resources

The work presented in this document has been carried out by the same team that carried out the hazard assessment work on the following Highways Agency projects:

- M42 MM
- BBMM1&2 schemes

This team has competency consistent with the guidance contained in the remit for organisation and governance - national safety control review group (NSCRG) and project safety control review group (PSCRG).
5.3 Approval process

The work presented in this document has been subject to an appropriate internal approvals process, as well as review by appropriate Highways Agency specialists.

The hazard assessment for MM-ALR has been verified at hazard log risk scoring workshops. Further details are provided in the DMSO report [5].
This page is intentionally left blank.
6 Have hazards been well managed?

This chapter demonstrates that:

- An appropriate risk assessment methodology, hazard log and set of hazards have been applied
- All scheme hazards have been analysed
- Safety requirements have been defined.

The structure of the argument is illustrated in the GSN diagram in Figure 6-1 below.

![GSN Diagram](image)

Figure 6-1: Extract of GSN diagram showing how it is demonstrated that hazards have been well managed

6.1 Risk assessment methodology, hazard log and set of hazards

6.1.1 Generic methodology

The risk assessment methodology applied is based on the methodology used for the M42 MM and BB MM 1&2 schemes and is described in IAN 139/11 [6].

From that generic MM hazard log, a list of specific hazards and their scores has been developed for MM-ALR and documented in DMSO report [5]. Hazards were categorised as ‘Event’ or ‘State’ hazards, each hazard consisting of three parameters as detailed in Figure
6.2. The individual scores for the three parameters are then added together to give an overall risk score for that hazard (e.g. E09 or S08).

For existing hazards, i.e. those hazards that exist both before and after the implementation of the scheme, changes in risk as a result of the scheme implementation are simply added to or taken away from the numeric part of the risk score. For example, if the before risk for a hazard is scored as E08 and the reduction in risk is 0.2, the after score is E07.8.

![Figure 6-2: Calculation of Event and State hazard risk scores](image)

Appendix C provides more details on the risk assessment methodology.

6.1.2 Use of M42 MM scheme monitoring results

To provide an evidential basis for scoring the changes in risk that may result from the scheme reference was made to the monitoring results obtained from the M42 MM scheme [2] (the number of accidents has decreased from an average of 5.08 a month to 2.25 a month; the Accident Severity Ratio has improved by 56% and the Casualty Severity Ratio has improved by 64% indicating that the remaining accidents are resulting in less severe casualties). This was justified on the basis that the proposed scheme shared a number of significant characteristics with the M42 MM scheme most notably the presence of a controlled environment.

6.2 Analysis of hazards – evidence gathering and assessment

In order to collect evidence to support the hazard analysis a number of studies have been undertaken. Two of these studies have direct relevance to this report. These are:
• APTR/D3M analysis and hazard assessment [7] – referred to as the APTR report

The APTR report collected evidence from existing roads in order to better understand the likely safety implications of the road layout component of MM-ALR.

The adequate guidance report considered amongst other issues whether or not the technology elements of MM-ALR are adequate for maintaining a good level of compliance by drivers.

6.2.1 All-Purpose Trunk Roads (APTR)/Dual 3-lane Motorway (D3M) analysis and hazard assessment

The APTR report summarised the results of a number of strands of work intended to provide an understanding of the safety challenges involved and to gain a level of assurance of how MM-ALR design would be expected to perform in terms of safety.

Three distinct elements of work were undertaken:

• Analysis of accident and casualty data collected from the D3M (which have hard shoulders) and multi-lane APTR (which do not). The purpose of this analysis was to establish the safety implications of converting the hard shoulder to a running lane without any further mitigation. That is, what is the underlying safety risk associated with the MM-ALR road layout

• Detailed analysis of some of the more significant safety hazards has been undertaken using the accident and casualty data described above. The purpose of this was to ensure that the safety implications of these are as fully understood as possible

• A hazard assessment was undertaken with respect to MM-ALR. This formed the basis of the hazard assessment presented in the DMSO report [5].

Analysis of accident and casualty data\(^3\) collected from all the D3M and multi-lane APTR in England indicated that 3-lane APTRs have a rate\(^4\) of KSI accidents that is approximately 9% higher than that encountered on the D3M network. With regard to KSI casualties, the rate is approximately 5% higher. These rates take into account the impact of MIDAS queue protection and are therefore measured against a baseline of a D3M without MIDAS.

The implication of the above result is to constrain the possible safety impact of MM-ALR to less than 9% greater than the baseline. This is because the MM-ALR layout shares many of the characteristics of 3-lane APTRs (i.e. no hard shoulder and lay-bys / refuge areas at a maximum of 2.5km intervals).

\(^3\) Personal Injury Accident (2005-2009 validated Stats19) data from the entire Highways Agency D3M, 2-lane and 3-lane APTR road network was used in the analysis. The data was restricted to those occurring on links between junctions as 2-lane and 3-lane APTRs have at grade junctions while the D3Ms do not.

\(^4\) per Million Vehicle Mile
Detailed analysis of some of the more significant safety hazards concluded that in comparison with D3M links, multi-lane APTR links are characterised by:

- A four to five fold increase in the frequency of vehicle parked in main carriageway accidents
- An increase in the frequency of accidents involving vehicles leaving the carriageway
- No increase in the frequency of fatigue related accidents
- An increase in frequency of pedestrian accident
- No increase in the frequency of debris related accidents
- An increase in the frequency of accidents involving a motorcycle.

The analysis concluded it is likely that the frequency of vehicle parked in main carriageway and vehicles leaving the carriageway accidents are related to the loss of the hard shoulder. However, it is likely that most of the increase in the frequency of pedestrian accidents is due to different levels of access to the road. The reason for the increase in frequency of motorcycle accidents is less clear and may be due to a number of factors including differences in geometrical standards between the two types of road.

In addition to the above, a more detailed analysis was also undertaken on three sections of roads which are known to have three lanes without a hard shoulder or substantial hard strip.

The three specific sections are:

- A3 – Stoke Interchange to Stratford Bridge
- A23 – M23 Junction 11 to Handcross
- A46 – Junction with A249/B4115 to Junction with A45.

The analysis of the accident and casualty data collected from the three selected APTR links suggests that 3-lane APTR links are capable of performing at a level of safety comparable with D3M links with similar geometry.

The APTR report provided a basis for understanding how key hazards could be impacted by the layout of MM-ALR and this has been carried through to the hazard assessment. A particular detailed assessment has been undertaken of the safety risk associated with vehicle parked in main carriageway accidents (i.e. accidents involving vehicles that breakdown in the carriageway).

6.2.2 Provision of adequate guidance review

The adequate guidance report considered the following question:

Is an adequate level of information (guidance) provided to the road user so that he understands how he is expected to behave within the new MM-ALR environment?

It considered a number of sources of information and concluded that:
• Evidence from existing MM-HSR schemes (M42 MM and BBMM1&2) shows a high level of compliance

• Existing MM-HSR schemes provide more reliable journeys encouraging compliance

• Evidence from existing MM-HSR schemes (M42 MM and BBMM1&2) shows MM creates a controlled environment.

The report also noted that:

• The level of speed compliance on the M42 MM and Birmingham Box Managed Motorways Phase 1 (BBMM1) schemes has significantly supported the safe and successful operation of the schemes

• Controlling the speed and behaviour of traffic has enabled the realisation of traffic benefits. In order to achieve a similar level of compliance on an MM-ALR scheme a comprehensive compliance strategy and education campaign will need to be in place

• MM-ALR scheme will provide additional capacity and help to alleviate any congestion on the section. The additional capacity should result in a higher probability of free driving conditions and therefore there is likely to be less inclination for a driver to change lanes or speed to gain an advantage over other traffic. In addition, if the majority of road users travel at the speed limits then it limits the ability of a minority of road users to speed

• The introduction of more reliable journeys is a key consideration for the driving public as surveys have indicated that ‘not knowing’ the time a journey is going to take is a major frustration. Therefore making journey times reliable day in, day out – even if the average journey time increases by a small percentage – is a key benefit that the existing MM-HSR schemes (i.e. M42 MM scheme) has delivered to road users

• MM-ALR will introduce a reduced level of infrastructure when compared to an IAN 111/09 scheme. Through their whole design the existing MM (IAN 111/09) schemes have encouraged compliance. Through the introduction of additional capacity on an MM-ALR designed scheme there will be a higher probability of free driving conditions than previous and drivers will be encouraged to comply

• The concept of a controlled environment was to some extent related to the amount of infrastructure and technology introduced through the existing MM-HSR (IAN 111/09) [3] schemes. This level of infrastructure and technology will be reduced with an MM-ALR scheme with no fixed hard shoulder cameras and fewer opportunities to provide information. However, there will be full CCTV coverage and information will be located at spacing which manages the amount of time a driver cannot see the next signal/variable message sign

• MM-ALR will increase the spacing of signalling, and a significant amount of it will come from the verge (the VMS) rather than overhead for all lanes. Signalling will be regularly spaced and the design of the MM-ALR schemes will result in good forward visibility before the next signal. The location of signs and signals will need to meet a number of design requirements to appropriate provision of information.
In conclusion the adequate guidance report suggests that the environment of MM-ALR (mandatory signals, VMS and MIDAS) is likely to lead to a level of driver compliance (i.e. responding as appropriate to signs and signals). This has subsequently been confirmed through a transport research laboratory (TRL) trial and has been taken account of in the hazard assessment.

6.2.3 High risk hazards

This section provides information about how the highest risk hazards (those that have a score of S08/E08 and above) are impacted by MM-ALR. Further details can be found in the DMSO report [5]

The highest scoring hazards drive the hazard analysis summarised in chapter 4 and represent approximately 89% of the total baseline risk.

Table 6-1 presents the change in safety risk for hazards with the greatest risk score:

- ‘0’ means no change in risk
- ‘Green’ means a reduction in risk
- ‘Red’ means an increase in risk

<table>
<thead>
<tr>
<th>Hazard</th>
<th>Description</th>
<th>Type</th>
<th>Before safety risk</th>
<th>After safety risk</th>
<th>% change in safety risk</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>H138</td>
<td>Driver fatigued - unable to perceive hazards effectively</td>
<td>Event</td>
<td>E09.00</td>
<td>E08.99</td>
<td>-3</td>
<td>Some benefit during peak of the controlled environment.</td>
</tr>
<tr>
<td>H37</td>
<td>Individual vehicle is driven too fast</td>
<td>State</td>
<td>S09.00</td>
<td>S08.77</td>
<td>-42</td>
<td>Considerable benefit from the controlled environment during the peak but also benefit off-peak (compliance with national speed limit).</td>
</tr>
<tr>
<td>H67</td>
<td>Pedestrian in running lane - live traffic</td>
<td>Event</td>
<td>E08.50</td>
<td>E08.50</td>
<td>0</td>
<td>Benefit from the controlled environment. However more instances due to increase in live lane breakdowns</td>
</tr>
<tr>
<td>H135</td>
<td>Vehicle stops in running lane - off-peak (Event)</td>
<td>Event</td>
<td>E07.81</td>
<td>E08.31</td>
<td>216</td>
<td>An increase in risk is anticipated reflecting a substantial increase in the frequency of vehicles</td>
</tr>
<tr>
<td>Hazard</td>
<td>Description</td>
<td>Type</td>
<td>Before safety risk</td>
<td>After safety risk</td>
<td>% change in safety risk</td>
<td>Comments</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>-------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>stopping in a running lane</td>
</tr>
<tr>
<td>H91</td>
<td>Tail gating</td>
<td>State</td>
<td>S08.50</td>
<td>S08.20</td>
<td>-49</td>
<td>Considerable benefit from the controlled environment during the peak</td>
</tr>
<tr>
<td>H76</td>
<td>Rapid change of general vehicle speed</td>
<td>Event</td>
<td>E08.50</td>
<td>E08.16</td>
<td>-54</td>
<td>Considerable benefit from the controlled environment during the peak</td>
</tr>
<tr>
<td>H152</td>
<td>Vehicle recovered from ERA</td>
<td>Event</td>
<td>E08.00</td>
<td></td>
<td></td>
<td>MM introduced hazard</td>
</tr>
<tr>
<td>H149</td>
<td>Vehicle drifts off carriageway (i.e. leaving the carriageway as a result of road environment)</td>
<td>Event</td>
<td>E08.00</td>
<td>E08.00</td>
<td>0</td>
<td>Although traffic is travelling closer to the edge of the carriageway, most of this traffic will be during peak and will be subject to a controlled environment</td>
</tr>
<tr>
<td>H52</td>
<td>Maintenance workers setting up and taking down work site</td>
<td>State</td>
<td>S08.00</td>
<td>S08.00</td>
<td>0</td>
<td>Although there is benefit from the controlled environment (setting of signals during set-up and taking-down), the number of times TM is used is expected to increase</td>
</tr>
<tr>
<td>H89</td>
<td>Sudden weaving at exit point</td>
<td>Event</td>
<td>E08.00</td>
<td>E07.93</td>
<td>-15</td>
<td>Some benefit from controlled environment</td>
</tr>
<tr>
<td>H54</td>
<td>Motorcycles filter through traffic</td>
<td>Event</td>
<td>E08.00</td>
<td>E07.91</td>
<td>-19</td>
<td>Benefit from controlled environment. Smoother traffic travelling at higher speeds - less need to filter through</td>
</tr>
<tr>
<td>H13</td>
<td>Driver loses control of vehicle</td>
<td>Event</td>
<td>E08.00</td>
<td>E07.90</td>
<td>-21</td>
<td>Some benefit from controlled environment</td>
</tr>
<tr>
<td>H120</td>
<td>Vehicle rejoins</td>
<td>Event</td>
<td>E08.00</td>
<td>E07.90</td>
<td>-21</td>
<td>Non-emergency stops are effectively eliminated and most remaining stops will be</td>
</tr>
<tr>
<td>Hazard</td>
<td>Description</td>
<td>Type</td>
<td>Before safety risk</td>
<td>After safety risk</td>
<td>% change in safety risk</td>
<td>Comments</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>running lane</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H121</td>
<td>Vehicle reversing along exit slip</td>
<td>Event</td>
<td>E08.00</td>
<td>E07.90</td>
<td>-21</td>
<td>Some benefit from controlled environment</td>
</tr>
<tr>
<td>H103</td>
<td>Unsafe lane changing</td>
<td>Event</td>
<td>E08.00</td>
<td>E07.83</td>
<td>-33</td>
<td>Some benefit from controlled environment</td>
</tr>
<tr>
<td>H11</td>
<td>Driver ignores closed lane(s) signals that are protecting an incident</td>
<td>Event</td>
<td>E08.00</td>
<td>E07.80</td>
<td>-37</td>
<td>More prominent signals can be used to reduce this risk</td>
</tr>
<tr>
<td>H112</td>
<td>Vehicle enters main carriageway unsafely</td>
<td>Event</td>
<td>E08.00</td>
<td>E07.80</td>
<td>-37</td>
<td>Some benefit from controlled environment based upon optimum provision as outlined through an overrun assessment</td>
</tr>
<tr>
<td>H95</td>
<td>TO/ISUO in running lane</td>
<td>Event</td>
<td>E08.00</td>
<td>E07.60</td>
<td>-60</td>
<td>Considerable benefit from the controlled environment and the use of rolling road-blocks</td>
</tr>
<tr>
<td>H154</td>
<td>Vehicle stopped on hard shoulder (D3M) or verge (MM-ALR)</td>
<td>State</td>
<td>S08.00</td>
<td>S06.50</td>
<td>-97</td>
<td>Effectively eliminated. Non emergency stops are reduced and most remaining stops will be in refuge areas</td>
</tr>
</tbody>
</table>

Table 6-1: Change in safety risk for hazards with the greatest risk score

Presented below is a discussion of the highest scoring hazards (i.e. those with a score of greater than E08/S08).

The two highest scoring hazards, ‘H138 - Driver fatigued – unable to perceive hazards effectively’ (E09) and ‘H37 - Individual vehicle is driven too fast’ (S09) are applicable to the existing motorway and also post implementation. The M42 MM monitoring report [2] suggests that there could be a slight reduction in risk and this has been taken into account within the analysis.
However, ‘H37 - Individual vehicle is driven too fast’ is expected to reduce significantly in risk post implementation because a controlled environment is provided through a combination of regularly spaced mandatory signals, perceived speed enforcement, and the perceived monitoring by PTZ CCTV cameras.

No change in risk is expected for ‘H67 - Pedestrian in running lane - live traffic’. Although there will be an increase in vehicles stopping in live traffic with the absence of the hard shoulder this will be mitigated by better and quicker protection of all incidents in live lanes therefore no change in risk has been noted for this hazard.

Hazard ‘H135 - “Vehicle stops in running lane – off-peak’ is likely to see a substantial increase in safety risk. Although ERAs and other refuge areas will help to minimise the number of vehicles stopping in a running lane an increase in frequency is still expected. Vehicles stopped in a running lane will be better protected through the use of signals once the location is verified. An increase in risk is anticipated reflecting a substantial increase in the frequency of vehicles stopping in a running lane.

The risk from ‘H76 - Rapid change of general vehicle speed’ and ‘H91 - Tail gating’ are expected to reduce significantly mainly due to the increased capacity provided by MM-ALR and the controlled environment provided by regularly spaced signals and MIDAS congestion algorithm.

The frequency of ‘H52 - Maintenance workers setting up and taking down work site’ is expected to remain the same under MM-ALR. Although there will be additional equipment implemented as part of MM-ALR along with the removal of the hard shoulder, a number of mitigation options to reduce the risk to maintainers will be included e.g. RCB. This is detailed further in the DMSO report [5].

One new high scoring hazard is introduced: ‘H152 - Vehicle recovered from ERA’.

6.2.4 Lower risk hazards

The scoring and analysis of lower risk hazards is covered in the DMSO report [5].

6.3 Safety requirements

The hazard assessment has generated/confirmed a number of safety requirements. These are presented in Table 6-2.
<table>
<thead>
<tr>
<th>Requirement</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR-02</td>
<td>Design</td>
<td>For the prevailing traffic conditions, motorists shall be given clear instruction on which lane(s) to use. These instructions must facilitate vehicle movements (from lane to lane) in a controlled and safe manner.</td>
</tr>
<tr>
<td>SR-03</td>
<td>Design</td>
<td>Variable mandatory speed control must be provided.</td>
</tr>
<tr>
<td>SR-04</td>
<td>Design</td>
<td>An automatic queue protection system (e.g. MIDAS) to alert both operators and road users of changes in traffic conditions must be provided.</td>
</tr>
<tr>
<td>SR-05</td>
<td>Design/Operator</td>
<td>An enforcement strategy must be implemented to ensure creation and maintenance of a 'controlled' environment.</td>
</tr>
<tr>
<td>SR-06</td>
<td>Other</td>
<td>A monitoring strategy must be in place to enable the creation and maintenance of the required network and safety performance data.</td>
</tr>
<tr>
<td>SR-07</td>
<td>Other</td>
<td>Stakeholder engagement must be designed to facilitate and support effective education and encouragement of road users.</td>
</tr>
</tbody>
</table>

‘Tactical’ Safety Requirements

Maintenance:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR-10</td>
<td>Design</td>
<td>All equipment must be designed to eliminate or minimise the need for maintenance and reduce the exposure for road workers SFAIRP (So Far As Reasonably Practicable). This includes the inclusion of rigid concrete barrier in the central reserve.</td>
</tr>
<tr>
<td>SR-11</td>
<td>Design</td>
<td>Roadside equipment requiring maintenance should, where practicable, be clustered and an appropriate access strategy put in place minimising the need for temporary traffic management in live lanes.</td>
</tr>
<tr>
<td>SR-12</td>
<td>Maintainer</td>
<td>Maintenance contractors must be trained and competent in the appropriate maintenance procedures.</td>
</tr>
<tr>
<td>SR-13</td>
<td>Maintainer</td>
<td>Winter treatment must include all designated refuge areas.</td>
</tr>
<tr>
<td>SR-14</td>
<td>Highways Agency/Design</td>
<td>Faults that impact on the safe and efficient operation of the system shall be defined and response / repair times incorporated into relevant contracts in accordance with their impact.</td>
</tr>
<tr>
<td>SR-15</td>
<td>Maintainer</td>
<td>Sightlines must be effectively maintained to signs and signals.</td>
</tr>
<tr>
<td>SR-16</td>
<td>Design</td>
<td>Equipment/procedures should be included with the aim of eliminating the need for carriageway crossings by</td>
</tr>
</tbody>
</table>
Scheme Operation

<table>
<thead>
<tr>
<th>SR-20</th>
<th>Operator</th>
<th>Procedures and guidance must be appropriate and effective for safe operation.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR-21</td>
<td>Operator</td>
<td>Traffic Officers must be trained and competent to work in accordance with the latest National Procedures and the Operational Procedures and Guidance provided within the MM Manual. Operators must be trained in the MM-ALR scheme procedures. They must also be competent in carrying out the procedures and guidance.</td>
</tr>
<tr>
<td>SR-22</td>
<td>Operator</td>
<td>Operators must have instantaneous access to the current procedures and guidance at all relevant workstations.</td>
</tr>
<tr>
<td>SR-23</td>
<td>Operator</td>
<td>The interfaces with emergency services must be effective and must allow them to carry out their functions.</td>
</tr>
<tr>
<td>SR-24</td>
<td>Operator</td>
<td>Procedures shall use a consistent lane referencing system across a scheme.</td>
</tr>
<tr>
<td>SR-25</td>
<td>Operator/Maintainer</td>
<td>A system must be established to operationally manage the access and actions of maintenance personnel.</td>
</tr>
</tbody>
</table>

Technology

<table>
<thead>
<tr>
<th>SR-30</th>
<th>Design</th>
<th>Software/hardware must be in accordance with Highways Agency standards.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR-31</td>
<td>Design</td>
<td>Software development procedures and testing must be in accordance with Highways Agency standards.</td>
</tr>
<tr>
<td>SR-32</td>
<td>Design</td>
<td>All site and system data must be maintained under strict version control.</td>
</tr>
<tr>
<td>SR-33</td>
<td>Maintainer</td>
<td>After maintenance activity has been carried out on the technology system and / or equipment, tests shall be carried out to re-commission them to the 'as-built' / as-commissioned.</td>
</tr>
<tr>
<td>SR-34</td>
<td>Design</td>
<td>Full CCTV camera coverage must be provided of the carriageway (including refuge areas). The coverage must be such that an operator can interpret correctly the nature of each incident within the designed viewing range at all times of day and night, and in all ambient lighting levels whether the carriageway is lit or not, as they will be used to confirm the location of incidents on the main carriageway. To achieve this, at the extreme of the required coverage and maximum zoom, a 1.75m target should represent a minimum of 5% of screen</td>
</tr>
</tbody>
</table>
Fixed signage must be provided directing motorists to ERTs (not including signage for pedestrians on marker posts which will not be provided on MM-ALR schemes).

Safety barrier must only be installed where necessary, i.e. gaps should not be necessarily closed.

Table 6-2: Safety Requirements for MM-ALR schemes
7 Conclusions

This document is the generic safety report for MM-ALR. The purpose of the document is to demonstrate that the appropriate level of safety management has been undertaken to assess the expected safety outcome for the implementation of MM-ALR.

The information presented in this report demonstrates that:

A safety objective has been set for the scheme and is likely to be achieved

- A safety objective has been set for MM-ALR for road users and road workers
- The safety baseline for the scheme has been set as “a D3M before implementation of MIDAS queue protection”
- A robust methodology has been used to demonstrate whether the safety objective is likely to be achieved. The methodology is based on the methodology used for the M42 MM and BBMM1&2 schemes (the foundation for the demonstration of meeting the safety objective is the risk assessment methodology which is documented in IAN139/11 [6])
- The demonstration of meeting safety objective based on the use of a scheme specific hazard log
- For individual populations, including road workers, the relevant safety objectives are likely to be achieved.

An appropriate safety management process has been selected for the project and has been applied

- An appropriate SMS has been selected and applied in accordance with Highways Agency PSRM work instructions, IAN139/111 [6] MM-ALR has been classified as ‘Type B’
- The project has been resourced with competent people to carry out the safety work
- A robust safety approvals process is in place to approve safety documents, in particular for key safety documents.

Hazards are well managed

- An appropriate risk assessment methodology consistent with the M42 MM and BB MM 1&2 schemes, IAN139/11 [6], and GD04/12 [9] has been used
- The MM generic hazard log has been used as the starting point to develop a list of hazards applicable to MM-ALR
- All identified scheme hazards have been assessed and the risk level they present has been determined
- Project safety requirements have been developed/ confirmed to manage the risk from MM-ALR hazards.
It can be concluded from the information summarised in this generic safety report that the objective to “demonstrate that the appropriate level of safety management has been undertaken to assess the expected safety outcome for the implementation of MM-ALR” has been met. For road workers (maintenance and ORR) it can be demonstrated that the safety objective of SFAIRP can be achieved.
References

<table>
<thead>
<tr>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1] Interim Advice Note 161/13, Managed Motorway – All lanes running</td>
</tr>
<tr>
<td>[3] Interim Advice Note 111/09, Managed Motorways implementation guidance – Hard shoulder running</td>
</tr>
<tr>
<td>[5] MM-ALR Demonstration of Meeting the Safety Objective Report, 1039092/DMS/017</td>
</tr>
<tr>
<td>[6] Interim Advice Note 139/11, Managed Motorways Project Safety Risk Work Instructions</td>
</tr>
<tr>
<td>[7] All-Purpose Trunk Roads (APTR)/Dual 3-lane Motorway (D3M) Analysis and Hazard Assessment, 1039092/ATA/035</td>
</tr>
<tr>
<td>[9] GD04/12 Standard for safety risk assessment on the strategic road network</td>
</tr>
</tbody>
</table>
Appendix A: Glossary of terms and abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>APTR</td>
<td>All purpose trunk road</td>
</tr>
<tr>
<td>BBMM1&2</td>
<td>Birmingham Box Managed Motorways Phases 1 and 2</td>
</tr>
<tr>
<td>CALR</td>
<td>Controlled all lanes running</td>
</tr>
<tr>
<td>CCTV</td>
<td>Closed circuit television</td>
</tr>
<tr>
<td>CDM</td>
<td>Construction (Design & Management)</td>
</tr>
<tr>
<td>D3M</td>
<td>Dual 3-lane motorway</td>
</tr>
<tr>
<td>DMRB</td>
<td>Design Manual for Roads and Bridges</td>
</tr>
<tr>
<td>ERA</td>
<td>Emergency refuge area</td>
</tr>
<tr>
<td>ERT</td>
<td>Emergency roadside telephone</td>
</tr>
<tr>
<td>FWI</td>
<td>Fatal and weighted injury</td>
</tr>
<tr>
<td>GALE</td>
<td>Globally at least equivalent</td>
</tr>
<tr>
<td>GSN</td>
<td>Goal-structured notation</td>
</tr>
<tr>
<td>HGV</td>
<td>Heavy goods vehicle</td>
</tr>
<tr>
<td>HSR</td>
<td>Hard shoulder running</td>
</tr>
<tr>
<td>KSI</td>
<td>Killed, seriously injured</td>
</tr>
<tr>
<td>LGV</td>
<td>Large goods vehicle</td>
</tr>
<tr>
<td>MIDAS</td>
<td>Motorway incident detection and automatic signalling</td>
</tr>
<tr>
<td>MM</td>
<td>Managed motorways</td>
</tr>
<tr>
<td>MM-ALR</td>
<td>Managed motorways all lane running</td>
</tr>
<tr>
<td>MM-HSR</td>
<td>Managed motorways – hard shoulder running</td>
</tr>
<tr>
<td>MSA</td>
<td>Motorway service area</td>
</tr>
<tr>
<td>NDD</td>
<td>Highways Agency, Network Delivery and Development</td>
</tr>
<tr>
<td>NetServ</td>
<td>Highways Agency, Network Services Directorate</td>
</tr>
<tr>
<td>NSCRG</td>
<td>National safety control review group</td>
</tr>
<tr>
<td>ORR</td>
<td>On road resource</td>
</tr>
<tr>
<td>PCF</td>
<td>Project control framework</td>
</tr>
<tr>
<td>PIA</td>
<td>Personal injury accident</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>PSCRG</td>
<td>Project safety control review group</td>
</tr>
<tr>
<td>PSRM</td>
<td>Project safety risk management</td>
</tr>
<tr>
<td>PTZ</td>
<td>Pan-tilt-zoom</td>
</tr>
<tr>
<td>RCB</td>
<td>Rigid concrete barrier</td>
</tr>
<tr>
<td>RSA</td>
<td>Road safety audit</td>
</tr>
<tr>
<td>SFAIRP</td>
<td>So far as is reasonably practicable</td>
</tr>
<tr>
<td>SMS</td>
<td>Safety management system</td>
</tr>
<tr>
<td>TJR</td>
<td>Through junction running</td>
</tr>
<tr>
<td>TOS</td>
<td>Traffic officer service</td>
</tr>
<tr>
<td>TMD</td>
<td>Highways Agency, Traffic Management Directorate</td>
</tr>
<tr>
<td>VMS</td>
<td>Variable message sign</td>
</tr>
<tr>
<td>VMSL</td>
<td>Variable mandatory speed limit</td>
</tr>
</tbody>
</table>
Appendix B: GSN diagram for the MM-ALR safety report
Appendix C: Risk assessment methodology

The risk assessment methodology is based on deriving safety risk scores for each hazard by adding together individual parameters.

Hazards are categorised as either an ‘Event’ or a ‘State’.

An Event (E) is a hazard which occurs momentarily, e.g. a vehicle carries out a high-risk lane change. Usually it is not meaningful to talk of how long such a hazard exists for. It is more relevant to understand how often this event occurs.

A State (S) hazard is one which is present for a period of time e.g. vehicle stopped on hard shoulder – the longer it is present, the greater the risk. Such hazards will have a measurable duration and can persist for long periods. Therefore it is important to understand how long the state exists (as well as how often it occurs).

Event hazard risk scores are evaluated by adding together a score for each of the following three factors:

- The rate at which the hazard is expected to occur
- The probability that the hazard causes an incident
- The severity of the incident

State hazard risk scores are evaluated by adding together a score for each of the following three factors:

- The likelihood that the hazardous state is present
- The rate at which incidents occur if the hazardous state is present
- The severity of the incident, which is the same as for event hazards

Therefore, risk scores for both Event and State hazards consist of three parameters as shown in Figure C-1 below. The individual scores for the three parameters are then added together to give an overall risk score for that hazard. However, the risk ‘score’ is based on a logarithmic scale, which is explained in more detail below.
C.1 **Index values used for event frequency and state likelihood**

The values that are actually entered into the hazard log database for these parameters are known as ‘Index Values’. These can be explained by looking at the frequency and likelihood parameters.
Event Frequency

The index values used for an Event frequency are shown in Table C-1.

<table>
<thead>
<tr>
<th>Event Hazard</th>
<th>Frequency Classification</th>
<th>Nominal Value: Occurrences/year/mile</th>
<th>Index Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Very frequent</td>
<td>1000</td>
<td>6.0</td>
</tr>
<tr>
<td>316</td>
<td>Very frequent</td>
<td>316</td>
<td>5.5</td>
</tr>
<tr>
<td>100</td>
<td>Frequent</td>
<td>100</td>
<td>5.0</td>
</tr>
<tr>
<td>31.6</td>
<td>Frequent</td>
<td>31.6</td>
<td>4.5</td>
</tr>
<tr>
<td>10</td>
<td>Probable</td>
<td>10</td>
<td>4.0</td>
</tr>
<tr>
<td>3.16</td>
<td>Probable</td>
<td>3.16</td>
<td>3.5</td>
</tr>
<tr>
<td>1</td>
<td>Occasional</td>
<td>1</td>
<td>3.0</td>
</tr>
<tr>
<td>0.316</td>
<td>Occasional</td>
<td>0.316</td>
<td>2.5</td>
</tr>
<tr>
<td>0.1</td>
<td>Remote</td>
<td>0.1</td>
<td>2.0</td>
</tr>
<tr>
<td>0.0316</td>
<td>Remote</td>
<td>0.0316</td>
<td>1.5</td>
</tr>
<tr>
<td>0.01</td>
<td>Improbable</td>
<td>0.01</td>
<td>1.0</td>
</tr>
<tr>
<td>0.00316</td>
<td>Improbable</td>
<td>0.00316</td>
<td>0.5</td>
</tr>
<tr>
<td>0.001</td>
<td>Incredible</td>
<td>0.001</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Table C-1: Frequency classifications and index values

So if an Event hazard is expected to occur 100 times a year on a mile of motorway (of the scheme), the value that is entered in the database is 5.0. However, if it occurs 10 times a year an index value of 4.0 is entered.

This ‘logarithmic’ scale of scoring is used to cover the necessary range of values and then present them in a manageable form. An increase of 1 in a score therefore represents a factor of 10 increase in the risk.

Therefore if an Event hazard has the following index values for each of its parameters;

- Frequency index value = 5.0,
- Probability index value = 1.0
- Severity index value = 1.0

Its overall score is E07.00
State Likelihood

The index values used for State hazard likelihoods are shown in Table C-2.

<table>
<thead>
<tr>
<th>Likelihood Classification</th>
<th>Interpretation</th>
<th>Index Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very frequent</td>
<td>At least 1 occurrence present at any one time per Motorway mile.</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>Present 115 days per year per Motorway mile</td>
<td>5.5</td>
</tr>
<tr>
<td>Frequent</td>
<td>Present 36.5 days per year per Motorway mile</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>Present 11.5 days per year per Motorway mile</td>
<td>4.5</td>
</tr>
<tr>
<td>Probable</td>
<td>Present 3.65 days per year per Motorway mile</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>Present 1.15 days per year per Motorway mile</td>
<td>3.5</td>
</tr>
<tr>
<td>Occasional</td>
<td>Present 9 hours per year per Motorway mile</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>Present 3 hours per year per Motorway mile</td>
<td>2.5</td>
</tr>
<tr>
<td>Remote</td>
<td>Present 50 minutes per year per Motorway mile</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>Present 15 minutes per year per Motorway mile</td>
<td>1.5</td>
</tr>
<tr>
<td>Improbable</td>
<td>Present 5 minutes per year per Motorway mile</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Present 90 seconds per year per Motorway mile</td>
<td>0.5</td>
</tr>
<tr>
<td>Incredible</td>
<td>Present 30 seconds per year per Motorway mile</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Table C-2: Likelihood classification of State hazards and index values

So if an Event hazard is expected to be present 9 hours per year on a mile of motorway (of the scheme), the value that is entered in the database is 3.0. However, if it occurs 11.5 days per year, an index value of 5.0 is entered.

If a State hazard has the following index values for each of its parameters;

- Likelihood index value = 4.0
- Rate index value = 1.0
- Severity index value = 2.0

Its overall score is S07.00

The index values used for the other parameter are defined in the following subsections.
C.2 Index values used for event probability and state rate

The values used for Event probability and State rate are presented in Table C-3.

<table>
<thead>
<tr>
<th>Classification</th>
<th>Events</th>
<th>States</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certain</td>
<td>A collision is certain</td>
<td>Definitely causes a collision</td>
</tr>
<tr>
<td>Probable</td>
<td>A collision is probable</td>
<td>Frequently causes a collision</td>
</tr>
<tr>
<td>Occasional</td>
<td>A collision will occasionally happen</td>
<td>Occasionally causes a collision</td>
</tr>
<tr>
<td>Remote</td>
<td>There is a remote chance of a collision</td>
<td>Infrequently causes a collision</td>
</tr>
<tr>
<td>Improbable</td>
<td>A collision is improbable</td>
<td>Rarely causes a collision</td>
</tr>
</tbody>
</table>

Table C-3: Event/State collision probability rates
C.3 Index values used for severity

The values used for severity for both Event and State hazards are presented in the Table C-4.

<table>
<thead>
<tr>
<th>Severity Classification</th>
<th>Interpretation</th>
<th>Index Value</th>
<th>Person outside of vehicle</th>
<th>Stationary Vehicle</th>
<th>Motorcycle</th>
<th>Car</th>
<th>Large Vehicle (HGV, LGV, Bus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe</td>
<td>The proportion of collisions that are fatal is expected to be higher than average by at least a factor of 10</td>
<td>2.0</td>
<td>Involved</td>
<td>Involved</td>
<td>Involved</td>
<td>Speed differential approx 60 mph</td>
<td>Speed differential approx 50 mph</td>
</tr>
<tr>
<td>Higher than average</td>
<td>The proportion of fatal collisions is expected to be higher than average by a factor between 3 and 10</td>
<td>1.5</td>
<td>No involvement</td>
<td>No involvement</td>
<td>No involvement</td>
<td>Speed differential approx 50 mph</td>
<td>Speed differential approx 40 mph</td>
</tr>
<tr>
<td>Average</td>
<td>The distribution of collisions (i.e. ratio of damage-only to fatal) is expected to be similar to the highway average</td>
<td>1.0</td>
<td>No involvement</td>
<td>No involvement</td>
<td>No involvement</td>
<td>Speed differential approx 40 mph</td>
<td>Speed differential approx 30 mph</td>
</tr>
<tr>
<td>Lower than average</td>
<td>The proportion of fatal collisions is expected to be lower than average by a factor between 3 and 10</td>
<td>0.5</td>
<td>No involvement</td>
<td>No involvement</td>
<td>No involvement</td>
<td>Speed differential approx 30 mph</td>
<td>Speed differential approx 20 mph</td>
</tr>
<tr>
<td>Minor</td>
<td>The proportion of collisions that are fatal is expected to be lower than average by at least a factor of 10</td>
<td>0.0</td>
<td>No involvement</td>
<td>No involvement</td>
<td>No involvement</td>
<td>Speed differential < 20 mph</td>
<td>Speed differential < 10 mph</td>
</tr>
</tbody>
</table>

Table C-4: Event/State collision severity rates
C.4 Index values used for ‘after’ scoring values

Hazard ‘after’ scores identify a variance in risk from the original ‘before’ score for the ‘steady state’ (operation) of the managed motorway scheme.

<table>
<thead>
<tr>
<th>Increase in risk</th>
<th>Value</th>
<th>% (+/-)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+0.5</td>
<td>216% increase in risk (tripling of risk)</td>
</tr>
<tr>
<td></td>
<td>+0.4</td>
<td>150% increase in risk</td>
</tr>
<tr>
<td></td>
<td>+0.3</td>
<td>100% increase in risk (doubling of risk)</td>
</tr>
<tr>
<td></td>
<td>+0.2</td>
<td>60% increase in risk</td>
</tr>
<tr>
<td></td>
<td>+0.1</td>
<td>25% increase in risk</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No change</th>
<th>0.0</th>
<th>No change in risk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.1</td>
<td>20% decrease in risk</td>
</tr>
<tr>
<td></td>
<td>-0.2</td>
<td>35% decrease in risk</td>
</tr>
<tr>
<td></td>
<td>-0.3</td>
<td>50% decrease in risk (risk halved)</td>
</tr>
<tr>
<td></td>
<td>-0.4</td>
<td>60% decrease in risk</td>
</tr>
<tr>
<td>Decrease in risk</td>
<td>-0.5</td>
<td>70% decrease in risk</td>
</tr>
</tbody>
</table>

Table C-5: ‘After’ scoring index values