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A B S T R A C T   

The chemical industry requires highly accurate and reliable measurements to ensure smooth operation and 
effective monitoring of processing facilities. However, measured data inevitably contains errors from various 
sources. Traditionally in flow systems, data reconciliation through mass balancing is applied to reduce error by 
estimating balanced flows. However, this approach can only handle random errors. For non-random errors 
(called gross errors, GEs) which are caused by measurement bias, instrument failures, or process leaks, among 
others, this approach would return incorrect results. In recent years, many gross error detection (GED) methods 
have been proposed by the research community. It is recognised that the basic principle of GED is a special case 
of the detection of outliers (or anomalies) in data analytics. With the developments of Machine Learning (ML) 
research, patterns in the data can be discovered to provide effective detection of anomalous instances. In this 
paper, we present a comprehensive study of the application of ML-based Anomaly Detection methods (ADMs) in 
the GED context on a number of synthetic datasets and compare the results with several established GED ap-
proaches. We also perform data transformation on the measurement data and compare its associated results to 
the original results, as well as investigate the effects of training size on the detection performance. One class 
Support Vector Machine outperformed other ADMs and five selected statistical tests for GED on Accuracy, F1 
Score, and Overall Power while Interquartile Range (IQR) method obtained the best selectivity outcome among 
the top 6 AMDs and the five statistical tests. The results indicate that ADMs can potentially be applied to GED 
problems.   

1. Introduction 

In the chemical industry, highly accurate and reliable measurements 
play an important role in process condition monitoring, control, and 
operational optimisation. Efficiency analysis and improved measure-
ment accuracy lead not only to more profitable operations but can also 
be useful for detecting operational faults. Unfortunately, due to the 
nature of measurement, measured data inevitably contains errors from 
several sources such as power supply fluctuations, network transmission 
and signal conversion noise, analog input filtering, and changes in 
ambient conditions (Jordache and Narashimhan, 1999). We describe 
this type of error as random measurement error. It generally has a 
normal distribution with zero mean and known variance. 

Data reconciliation aims to eliminate random errors by reconciling 
measurements to process constraints e.g., mass or energy balance. Data 

Reconciliation (DR) emerged in the mid-1960s and since then it has been 
applied to many areas such as the chemical and energy industries 
(Loyola-Fuentes and Smith, 2019). Established data reconciliation 
techniques use mathematical methods, such as least-squares, to adjust 
measurements utilising process model equations such as equilibrium 
equations and conservation laws (Jordache and Narashimhan, 1999). 
Those data points that require to be adjusted more than an expected 
amount are flagged up as potential errors for further investigation. 

It is widely recognized that the techniques of reconciliation work 
under the assumption that only random errors are present in the data. If 
non-random errors (called gross errors, GEs) caused by, for example, 
instrument failure, measurement bias, or process leaks, are also present, 
the reconciled result can be very inaccurate and even infeasible (Jord-
ache and Narashimhan, 1999). Detecting GEs is thus an important step 
before obtaining final reconciled estimates. 
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In the past years, several gross error detection (GED) methods were 
introduced and most of them are based on statistical tests. The first 
statistical GED method was proposed by Reilly and Carpani (1963) in 
1963. Since then, further methods such as the measurement test (Crowe 
and Garcia Campos, 1983), and the nodal test (Mah et al., 1976) have 
been proposed and widely applied. Although statistical tests are widely 
used by industries, two of their obvious shortcomings should be noticed. 
First, the statistical tests work on process data which is corrected with 
the help of steady-state material and balance models of the process 
(Jordache and Narashimhan, 1999). In the existing literature, GED and 
DR models work under the assumption that model equations capture the 
process without any mathematical error. In practice, however, the 
models could be inaccurate, highly likely leading to uncertainties in 
states which violate the underlying assumption. Moreover, statistical 
tests for GED only look at a snapshot in time but there are patterns in 
data that can help to understand how a system or a particular meter is 
performing over time. With the help of Machine Learning (ML) ap-
proaches, patterns in data can be discovered to obtain useful knowledge 
for decision-making. While improving upon statistical GEDs, new ap-
proaches from Machine Learning (ML) such as Neural Networks (Reddy 
and Mavrovouniotis, 1998) and ensembles of GE detectors (Nguyen 
et al., 2020), have also been developed and many of them have proved to 
be suitable for applications. From this point of view, this paper aims to 
explore the potential of a data-driven approach utilising ML for the 
problem of GED. 

The basic principle of GED is a special case of the detection of outliers 
(or anomalies) in data analytics (Jordache and Narashimhan, 1999). 
Anomalies are patterns that do not conform to a well-defined notion of 
behaviours (Chandola et al., 2009). Anomaly detection (AD) refers to 
the labelling of observations as anomalous through methods, models, 
and items based on data (Ruff et al., 2021). Nowadays, many applica-
tions of AD can be found in diverse areas, such as cybersecurity (Patcha 
and Park, 2007), fraud detection (Abdallah et al., 2016), industrial fault 
and damage detection (Carrera et al., 2015), medical diagnosis (Schlegl 
et al., 2019), event data in earth sciences (Wu et al., 2019), and physics 
(Cerri et al., 2019). A notable example of AD is in the aerospace area 
where anomalous readings from a spacecraft sensor could signify a fault 
of components in the spacecraft (Fujimaki et al., 2005). AD is also 
related to novelty detection, which aims to detect previously unobserved 
patterns in the data, with the difference being that novel patterns are 
usually incorporated into the normal model after detection (Chandola 
et al., 2009). Despite many ADMs being introduced, AD has been 
considered a challenging topic, due to large variability within datasets 
and the lack of anomalous events for training (Ruff et al., 2021). 

It is noted that many methods based on ML have been introduced for 
various applications where ML refers to the use of algorithms that learn 
from data to perform human-level tasks such as recognition and un-
derstanding. In recent years, a new subfield of ML called Deep Learning 
(DL) has achieved state-of-the-art results in many areas. DL utilizes 
model architecture with processing layers to learn data representations 
with multiple abstraction levels (LeCun et al., 2015). With DL, it be-
comes possible to automatically learn relevant features, with excep-
tional success in comparison to traditional methods. DL is the driving 
force behind many artificial intelligence (AI) applications and services 
that improve automation, performing analytical and physical tasks 
without human intervention. DL-based approaches to AD have delivered 
improved results on complex datasets and renewed interest in this area, 
with a great variety of new methods being introduced (Ruff et al., 2021). 
To our knowledge, there has been no review of ML and anomaly 
detection methods (ADMs) for GED. There are also no existing papers 
where DL-based methods were used for the GED problem in the litera-
ture or where a broader comparison was made with the different ADMs. 
We believe that it is important to (i) raise awareness in the chemical 
engineering community of an important application of ML/DL to the 
GED problem and (ii) showcase how newer ML/DL approaches can be 
used and performed on a number of benchmark systems. This motivates 

us to conduct an extensive review of the ADMs and evaluate their per-
formances when solving the problem of GED so as to explore their po-
tential in practical GED applications. 

Our contributions are as follows:  

• It is recognized that there are already published systems that aim at 
creating diverse benchmarks for DR and GED (do Valle et al., 2018), 
however, they have been used effectively for conventional ap-
proaches without focusing on ML/DL as well as any comparisons of 
existing methods. To apply ADMs to the problem of GED, training 
data is required from which to exploit the pattern of gross errors. To 
our knowledge, there is a lack of training datasets for the problem of 
GED in the literature which prevents the application of ADMs to this 
problem. In this study, we generate a number of measurement 
datasets, including training and testing data, associated with 16 
systems introduced in the literature.  

• We conduct an extensive review of existing ADMs based on ML and 
DL. The main approaches in the literature will be delineated and 
examples for each approach will be provided. Our review also 
highlights the main challenges currently faced and potential research 
directions.  

• We propose a learning system to detect GEs by using ADMs. Our 
model describes a data pipeline consisting of multiple sequential 
steps from data pre-processing to detection model training and 
deployment. Our study aims to introduce a pipeline on how to 
implement and deploy an AD-based framework for the GED problem, 
starting from the raw measurement data to the trained detection 
model.  

• We train 19 ADMs on the training datasets associated with the 16 
systems to generate detection models. These models are applied to 
test datasets to determine whether anomalies are present in them. 
The performance of ADM models is evaluated against a number of 
established performance metrics. We explore what novelty and 
performance improvement ADMs can bring to the GED problem as 
well as provide a guidance of choosing an ADM in specific situations. 

The paper is organized as follows. In Section 2, methods for GE 
detection and identification for steady-state cases, along with ML and 
DL-based ADMs are introduced. In Section 3, the general model of a GED 
system using ADMs and all settings for the comparative study are 
described. Experimental results are presented in Section 4; here the re-
sults of the ADMs and several existing GED methods are compared when 
using datasets generated from 16 systems collected from the literature. 
Finally, our conclusions are presented in Section 5. 

2. Background and literature review 

2.1. Methods for gross error detection and identification 

There are four notable requirements when designing any GED 
method (Jordache and Narashimhan, 1999) (i) detect the presence of 
one or more GEs (the detection problem) (ii) identify and locate the 
single GE (the identification problem) (iii) identify and locate multiple 
gross errors (MGE) present in the system (the MGE identification 
problem) (iv) GE magnitude estimation problem. In this section, we will 
mention several existing GED methods for steady-state cases (Jiang 
et al., 2014). 

It is assumed that random error present in any measurement follows 
a normal distribution with zero mean and known variance. Therefore, 
the normalised error which follows the standard normal distribution 
mostly falls inside a confidence interval at a given or chosen significance 
level. This statistical principle is the basis of statistical tests to detect 
GEs. The statistical tests are commonly based on hypothesis testing by 
choosing between the null hypothesis H0 “no gross error is present” and 
the alternative hypothesis H1 “one or more gross errors are present”. 
The null hypothesis is accepted or rejected by comparing a test statistic 
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to an appropriate critical value. One of the most widely used statistical 
tests is the multivariate global test (GT) (Reilly and Carpani, 1963) in 
which the test statistic is calculated based on the vector of constraint 
residuals and its covariance matrix. The constraint test or nodal test 
(NT) (Mah et al., 1976) works on each constraint residual separately by 
exploiting diagonal terms of the covariance matrix of constraint re-
siduals. Crowe (1989) introduced the maximum power constraint test 
based on a linear transformation of constraint residuals raising the 
probability of detecting GEs above that of the NT. The measurement test 
(Crowe and Garcia Campos, 1983) (MT) meanwhile treats each mea-
surement separately when detecting GEs on each stream. MT uses 
measurement adjustments which are the differences between measure-
ments and associated reconciled estimates to calculate the test statistic. 
Since MT or NT includes a set of univariate tests for streams or nodes and 
each test uses the same critical value, the probability of Type I error of 
one of the univariate tests in MT and NT will be higher than the specified 
value of the significance level. To overcome this issue, Mah and Tam-
hane (1982) proposed to modify the significance level based on the 
Sidak inequality so as to control the Type I error probability. Rollins and 
Davis (1992) proposed another modification of the significance level 
based on the Bonferroni confidence interval. Narasimhan and Mah 
(1987) introduced the Generalized Likelihood Ratio (GLR) test which 
aims to maximise a ratio of posterior probabilities of obtaining residual 
vectors under the H0 and H1 hypotheses to find GEs. Another approach 
which is used for gross error detection is Inter Quartile Range (IQR), in 
which an instance outside of the range between the first and third 
quartile is considered anomalous (Laurikkala et al., 2000). Tong and 
Crowe (1995) mentioned the limitations of several multivariate and 
univariate tests including GT, MT, and NT relating to ignorance of the 
covariance between each pair of elements in the covariance matrices. 
They then proposed principal component tests which provide more 
advantages by exploiting the entire information of the covariance matrix 
of constraint residuals and measurement adjustments through Principal 
Component Analysis (PCA)-based projections. Each of the 
above-mentioned methods aims to solve the detection problem. The NT, 
MT, GLR, and PCA tests also aim to identify and locate GEs while the 
GLR test can also estimate the GE value. 

For the MGE identification problem, several methods have been 
introduced with one of three main strategies: (i) serial elimination (ii) 
serial compensation, and (iii) collective (or simultaneous) compensa-
tion (Prata et al., 2010). 

Describing the serial elimination strategy, Rosenberg et al. (1987) 
reviewed the early work in Ripps (1965), Nogita (1972), and Romagnoli 
and Stephanopolous (1981) such that when a GE is detected by using a 
GED method like GT or MT, the measurements are then removed 
sequentially in a group of specific size until no suspect set of measure-
ments can be found. Yang et al. (1995) used the serial elimination 
strategy in designing a combined test from MT and NT. MT is applied to 
discover a potential stream list containing the GEs and then NT is 
applied on nodes associated with streams in that list to obtain the stream 
with the highest test statistic. This stream will be removed from the 
measurements and the iteration is run until no GEs are found. Congli 
et al. (2006) changed the order of the MT-NT combined method by 
applying NT first to detect potential nodes containing GEs and then 
applying MT on streams associated with these nodes. Jiang et al. (2014) 
applied GT and serial elimination strategy together to detect and iden-
tify GE for operational data in power plants. The detection results of 
their method were then validated by checking on-site inspection and 
maintenance records in order to ensure a reliable detection outcome. 

In the serial compensation strategy, GEs are also detected but 
instead of removing them from the measurement as in the elimination 
strategy, they are replaced by estimated values. Wang et al. (2004) 
applied this strategy to modify the combined MT-NT of (Yang et al., 
1995) so that the coefficient matrix remained unchanged, reducing early 
termination of the combined test. 

Finally, collective compensation strategy methods attempt to detect 

all GEs simultaneously in a single iteration. Keller et al. (1994) used the 
magnitudes estimated collectively by GLR (Narasimhan and Mah, 1987) 
to compensate for the GEs in case GEs are present in the systems. 
Sánchez et al. (1999) introduced a two-stage algorithm to simulta-
neously estimate biases and leaks in process plants. In the first stage, 
starting with each constraint, data reconciliation is applied to determine 
the associated objective function. The global test is run in each case by 
using the value of the objective function. If the null hypothesis H0 of this 
test is rejected, all measurements involved in the considered constraint 
and a leak from the corresponding node are added to the list of suspected 
gross errors. In the second stage, each combination including several 
candidates in the suspected list is evaluated. The combinations contain 
GEs if they raise the lowest objective function value and satisfy the 
global test i.e., H0 hypothesis is accepted. Loyola-Fuentes and Smith 
(2019) used the GT for GED and modified the simultaneous work of 
(Reilly and Carpani, 1963) with a non-linear programming imple-
mentation in order to detect GE in crude oil pre-heat trains undergoing 
shell-side and tube-side fouling deposition. 

The importance of using historical information relating to past fail-
ure data on measuring instruments for further enhancement of test 
procedure performance emerged in the late 1990s. The Bayesian 
approach proposed by Tamhane et al. (1988) was the first attempt to 
employ such historical information to model the occurrences of GEs. 
Under distribution assumptions for the random error and binary indi-
cator of GE on each measurement, the authors utilised the Bayesian 
method to model the posterior probability of the indicator given his-
torical information. According to Bayes’ rule, the GE indicator was 
determined by maximizing the posterior probability. Yuan et al. (2015) 
proposed a hierarchical Bayesian framework to solve both GED and DR 
problems. The measurement model was given in the same way as in 
Tamhane et al. (1988) concerning the GE indicator and magnitude, 
however, the posterior probability was proposed in a more complicated 
form by estimating the indicator and magnitude of GE, the reconciled 
measurement, and covariance matrices given by historical data. The 
complicated posterior probability was broken down into three inference 
layers for reconciled measurement and GE magnitude (layer 1), 
covariance matrices (layer 2), and GE indicator (layer 3) under Bayes 
rule. In recent years, with a proliferation of applications of ML in many 
areas, several ML-based models trained on historical data were intro-
duced to detect and identify GEs. Reddy and Mavrovouniotis (1998) 
used a 3-layer neural network including one input layer, one hidden 
layer, and one output layer, to estimate the value of each measurement 
and its associated residual error. For each test sample, if the sum of the 
squares of the residuals does not fall within the established confidence 
limits, this sample is highly likely to contain a GE. Gerber et al. (2014) 
treated GED as a classification problem in which the ground truth of 
each measurement is encoded into binary value for detection and cat-
egorical value for the identification task. The authors experimented with 
3 classifiers namely decision tree, linear, and quadratic discriminative 
analysis on 10 datasets generated from a simple two-product splitter 
process. Nguyen et al. (2020) proposed an ensemble of GED methods in 
which the outputs of each method given in the form of p-values are 
combined by using the Fisher combination method for the final GED 
conclusion. The proposed ensemble was further improved by searching 
for a suitable subset of methods in the ensemble for each sample. The 
authors used Particle Swarm Optimization (PSO), an effective 
swarm-based continuous optimization method, for the search process. 
Dobos et al. (2021) also introduced an ensemble of GED methods in 
which the outputs of all methods in the ensemble are combined by using 
a weighted combining method i.e., each method is associated with a 
specific weighted value in the combining. 

2.2. Anomaly detection methods 

2.2.1. Traditional machine learning methods for anomaly detection 
ML refers to a class of algorithms that learn from data to perform 
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human-level tasks with reasonable accuracy. In the past years, although 
many ML methods have been introduced to detect anomalous samples 
from the data, there exists a number of challenges that make the design 
of an effective ML method for AD difficult. Firstly, the amount of 
labelled anomalous data is lacking, which has an adverse impact on the 
training of ML models. Secondly, each domain has a different notion of 
anomaly, which makes it difficult to transfer a technique developed in 
one domain to another. Thirdly, data often contains noise that is very 
hard to distinguish from the real anomalies, and this negatively affects 
the performance of the ML model. Fourthly, in many areas, the concept 
of anomaly evolves over time and the ML model must be updated 
accordingly. In this section, we will review the major approaches in 
applying ML to AD. 

ML techniques for AD can be divided into several broad categories: 
density estimation and probability-based methods, one-class classifica-
tion methods, reconstruction-based methods, and proximity-based 
methods. Density-based ADMs are based on the principle in which 
outliers are usually in low-density regions as opposed to normal in-
stances (Li et al., 2022). One of the simplest methods in this class is the 
"three-sigma" rule, which considers points more than three standard 
deviations from the mean to be anomalies (Bakar et al., 2006). Classic 
density estimation methods for AD include kernel density estimator 
(Kim and Scott, 2012), Gaussian Mixture Model (GMM) (Amruthnath 
and Gupta, 2018), and histogram estimator (Ruff et al., 2021). It should 
be noted that the number of required parameters for these models in-
crease exponentially as the number of dimensions increases. In Li et al. 
(2022), Zheng et al. proposed ECOD, which first finds the empirical 
cumulative distribution for each data dimension, then estimates the tail 
probabilities per dimension. Finally, an outlier score is calculated by 
aggregating estimated tail probabilities across dimensions. COPOD, 
proposed by Li et al. (2020), is built on the concept of copulas, which are 
functions that can separate marginal distributions of a given multivar-
iate distribution, which allows separate modelling of each dimension. 
An empirical copula is first constructed which is then used to predict tail 
probabilities of each data point. Pevny (2016) proposed LODA, which 
uses a number of one-dimensional histograms constructed using random 
projection to approximate the joint probability, followed by an 
ensemble of histogram detectors. In Goldstein and Dengel (2012) the 
authors introduced HBOS, which calculates histograms using dynamic 
bin width for each dimension, and the product of the inverse of the 
estimated density is used as the final anomaly score. We can see a dif-
ference between HBOS and ECOD and COPOD in which while HBOS 
constructs histograms using random projection to approximate the joint 
probability, and the density in each histogram is used as an anomaly 
score, ECOD and COPOD model the distribution of each dimension 
separately before estimating the tail probabilities for the outlier detec-
tion. Although the histogram-based techniques are relatively simple, 
they may struggle to capture the interactions between different attri-
butes. It is noted that density-based ADMs work based on statistical 
assumptions regarding the data they are applied to. Therefore, their 
performance is strongly influenced by the robustness of these assump-
tions. Those methods often provide confidence intervals along with their 
outputs, ensuring statistically justifiable results with guaranteed mar-
gins of error, as long as the underlying density and probabilistic as-
sumptions are satisfied (Chandola et al., 2009). 

One-class ADMs find an optimal decision boundary to differentiate 
the abnormal instances by learning from normal instances only during 
training so that the trained model can identify anomalous cases it has 
never seen before (Chandola et al., 2009). The objective of one-class 
classification is to learn the decision boundary using unlabelled data 
which minimizes the falsely raised alarms for normal instances (type I 
error) and undetected true anomalies (type II error) (Ruff et al., 2021) 
These methods are based on the argument that full density estimation is 
not necessary for AD, since only one single density level set is needed 
(Tax and Duin, 2004). One-class classification can be seen as binary 
classification in which only accessing normal data is available. The 

one-class classification objective is then to minimize the falsely raised 
alarms for normal instances and missed anomalies (Ruff et al., 2021). In 
this category, one-class Support Vector Machine (OCSVM) (Wang et al., 
2007) is a popular technique for unsupervised AD. OCSVM works on the 
basic idea of minimizing the hypersphere of the single class of examples 
in training data and considers all the other samples outside the hyper-
sphere to be outliers or out of training data distribution. Another notable 
method is Support Vector Data Description (SVDD) (Tax and Duin, 
2004) which is based on the observation that a good data description 
covers all the target data but no superfluous space. A spherically shaped 
boundary is created around the dataset using a few training instances to 
separate the normal and abnormal instances. Elliptic Envelope, pro-
posed in Hardin and Rocke (2004) seeks to find the subset of training 
instances whose covariance matrix has the lowest determinant (Rous-
seeuw and Driessen, 1999), and the constructed ellipse which covers 
these instances is then used to determine whether a point is anomalous 
or not. It is noted that one-class ADMs trained a model on normal in-
stances only to create a decision boundary so that the model can identify 
anomalous cases it has never seen before. One-class ADMs do not put 
any statistical assumptions about the data distribution like other ap-
proaches such as density and probability-based, which make one-class 
ADMs more generalised than their peers (Ruff et al., 2021). On the 
other hand, one-class ADMs return binary output on each test instance, 
which can also be seen as a disadvantage when a meaningful anomaly 
score in the form of probability is desired for decision-making (Chan-
dola et al., 2009). 

Reconstruction-based methods for AD meanwhile learn a model 
which can reconstruct normal instances while failing at reconstructing 
anomalous instances (Ruff et al., 2021). Most of these models, such as 
Principal Component Analysis (PCA) (Shyu et al., 2003), are motivated 
by geometrical considerations, but some are connected to density esti-
mation. There are two assumptions underlying these methods: the 
manifold and prototype assumptions. The manifold assumption asserts 
that the data is mostly represented by some lower dimension manifold 
which resides in the data space, while the prototype assumption asserts 
that there exists a finite number of prototypical elements in the data 
space which reasonably characterizes the data. One of the most popular 
reconstruction-based methods is autoencoders, which is a neural 
network consisting of two parts: encoder and decoder (Ruff et al., 2018). 
The encoder embeds the input data into a lower-dimensional space 
while the decoder reconstructs the resulting embedding into the original 
space. The autoencoder is then trained to minimize the reconstruction 
error between the input and the output of the decoder, which forces the 
network to learn the best representation of the data in the hidden layer. 
The data instances with high reconstruction errors are assumed to be 
anomalies. Another example is Variational Autoencoder (VAE) which 
adopts a stochastic autoencoding process by encoding and decoding the 
parameters through the encoder and decoder network but unlike 
autoencoders, VAE assumes that the latent representation has Gaussian 
distribution, and the VAE is trained to minimize the mean reconstruction 
errors (Kingma and Welling, 2019). In Shyu et al. (2003), the authors 
proposed to use PCA for anomaly detection based on the observation 
that the first few principal components explain most of the variance in 
the data and large values of the last components represent significant 
deviations from the normal instances. The principal components are 
extracted, and an instance is classified as anomalous if the sum of the 
first or last components exceeds a certain threshold. Kriegel et al. (2009) 
proposed SOD which detects anomalies using the deviations from the 
neighbours of each instance in the axis-parallel subspace spanned by the 
neighbours. Among these methods, autoencoders and VAE project the 
data into a lower dimension before projecting back to the original space 
by using a neural network. The anomalies would have higher recon-
struction errors compared to normal instances. Other methods such as 
PCA meanwhile use principal components of the data for reconstruction. 
Reconstruction-based ADMs are capable of handling high-dimensional 
datasets due to their ability to perform dimensionality reduction. They 
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can also serve as a pre-processing step for input data before applying a 
different method in another category (Chandola et al., 2009). However, 
it should be noted that certain reconstruction-based methods, such as 
PCA and autoencoder, are not suitable for datasets with high levels of 
noise as they may yield poor results (Chalapathy et al., 2017). 

Proximity-based ADMs separate anomalous instances from normal 
instances using a predefined proximity metric. In proximity-based 
methods, an instance is anomalous if its locality, or proximity, is 
sparsely populated. There are three ways of defining proximity: cluster- 
based, distance-based, and density-based (Aggarwal, 2017). In the 
cluster-based approach, the dataset is divided into a number of clusters 
and an instance is classified as anomalous depending on its 
non-membership in the clusters, its distance from the nearest cluster, or 
the size of the closest cluster. In the distance-based approach, the dis-
tance from an instance to its nearest neighbours is used to define prox-
imity, while in the density-based approach, the number of other points 
in a local region is used to define which instance is anomalous. In Liu 
et al. (2009), the authors proposed Isolation Forest, which is based on 
the observation that tree structure can be constructed to isolate anom-
alous instances at the root. An ensemble of these isolation trees is 
created to detect the anomalous instances which have shorter average 
path lengths than the normal instances. Local Outlier Factor (LOF), 
proposed in Breunig et al. (2000), computes the local density deviation 
of a given data point compared to its neighbours. The instances with a 
significantly lower density than their neighbours are considered anom-
alous. Angiulli and Pizzuti (2002) proposed to use the sum of distances 
from an instance to its k-nearest neighbours as the anomaly scores, 
which are efficiently calculated by linearizing the search space. In 
Kriegel et al. (2008), the authors noted that approaches based on dis-
tance calculation are not effective on high-dimensional data due to the 
curse of dimensionality. They proposed Angle-Based Outlier Detection 
(ABOD) which uses the variance of the angles between a point and all 
other pairs of points in the dataset as the anomaly score. Almardeny 
et al. (2020) proposed Rotation-based Outlier Detection (ROD), which 
first decomposes the full attribute space into different subspaces, then 
rotates the data instances about the geometric mean to construct the 
anomaly score. In Tang et al. (2002) the authors noted that LOF 
implicitly assumes that the data is distributed spherically, which might 
be restrictive. The authors proposed a Connectivity-based Outlier Factor 
(COF) method, based on the concept of chaining distance, which is the 
minimum of the sum of the distance of the k neighbours and the 
instance. The authors noted that chaining distance can be used as an 
approximation for local density of the neighbourhood while the ratio of 
the chain distance of a data point to the average chain distance of all 
nearest neighbours at that point is used to define the anomaly score. In 
Arning et al. (1996), the authors proposed Linear Method for Deviation 
Detection (LMDD), a linear-complexity algorithm which minimises 
dissimilarity between instances to detect the anomalies using a dissim-
ilarity function and a smoothing factor. Among these methods, 
density-based methods such as LOF uses the number of other points in a 
local region as a criterion to detect anomalies. In contrast, 
distance-based methods such as COF and LMDD use the distance from an 
instance to its nearest neighbours as a proximity measure, while 
cluster-based methods like ROD separates the data into a number of 
clusters so that an instance is classified based on its membership values 
in the clusters. Proximity-based ADMs have an advantage from the fact 
that they do not require any statistical assumptions about the data, and 
thus that makes them suitable for many types of datasets. By contrast, 
there are some disadvantages of proximity-based ADMs in which their 
performances are largely dependent on the proximity measure to 
distinguish between normal and anomalous instances, the computation 
requirements for the testing phase might be high, and if the data has 
either normal instances without enough neighbours or abnormal in-
stances with enough neighbours then there will be missed anomalies. 

2.2.2. Deep learning methods for anomaly detection 
DL is an emerging subfield of ML which utilizes model architecture 

with processing layers to learn data representations with multiple 
abstraction levels (LeCun et al., 2015). With DL, it becomes possible to 
automatically learn relevant features, with exceptional success over 
traditional methods (Hinton et al., 2012), especially in computer vision 
(Krizhevsky et al., 2012). DL-based approaches to AD have delivered 
improved state-of-the-art results on complex datasets and renewed in-
terest in this area, with a great variety of new methods being introduced 
(Ruff et al., 2021). Unlike traditional methods, DL-based approaches to 
AD mitigate the burden of feature engineering and enables effective, 
scalable solutions. The main approaches in applying DL to AD are: deep 
autoencoders variant, deep one-class classification, deep generative 
models, such as Generative Adversarial Networks (GAN), variants, and 
self-supervised methods (Ruff et al., 2021). 

An autoencoder consists of two parts: the encoder and the decoder. 
The encoder maps the input to a smaller dimension to extract salient 
features, and the decoder maps these features back to the original 
dimension to reconstruct the input (Ruff et al., 2021). Some popular 
variants of deep autoencoders for AD include denoising autoencoders 
(Zhou and Paffenroth, 2017), variational autoencoders (VAE) (Ruff 
et al., 2021), Adversarial Autoencoders (Principi et al., 2017), and 
Recurrent Neural Network (RNN)-based autoencoders (Lu et al., 2017). 
An example of Adversarial Autoencoder in AD is SO-GAAL (Liu et al., 
2020), which uses a mini-max game between a generator and a 
discriminator to generate informative potential. The generator directly 
generates artificial anomalies which are closed to real data through the 
guidance of the discriminator. Artificial anomalies enable the discrimi-
nator to learn to distinguish between normal instances and anomalies 
based on a separation boundary between them. In Chalapathy et al. 
(2017), the authors proposed an improvement to Robust PCA (Candes 
et al., 2010) by replacing linear projection with a deep and robust 
autoencoder, which allows the method to capture complex non-linear 
structures for AD. In Aytekin et al. (2018), showed that adding L2 
normalization for the training of deep autoencoders results in more 
separable clusters. Based on this observation, the authors performed 
k-mean clustering on the resulting L2 normalized representation of the 
deep autoencoder, and the distances from the centroids to each sample 
can be used for AD. In Gong et al. (2019), the authors noted the 
assumption that anomalies always correspond to high reconstruction 
error might not always be correct and used a memory module (Weston 
et al., 2015) to augment the autoencoder. Given an input, the method 
firsts obtain an encoding from the encoder, which is then used to query 
the most relevant items in the memory for reconstruction. In the training 
stage, the memory content is encouraged to represent the normal data. 
Liu et al. (2021) proposed a robust framework based on collaborative 
autoencoders to jointly identify normal observations in the dataset while 
learning its feature representation for AD. 

One-class Support Vector Machine (OCSVM) (Wang et al., 2007) is 
one of the most popular one-class classification techniques for AD. 
However, it is known that the complexity of SVM grows quadratically 
with the number of training instances, which is a serious challenge for 
high-dimensional datasets (Huang and LeCun, 2006). In Erfani et al. 
(2016), the authors proposed to use Deep Belief Network (DBN) for 
feature extraction before applying OCSVM for AD. Ruff et al. (2018) 
observed that most deep ADMs involve networks trained on a separate 
task which is then adapted to AD. The authors proposed Deep SVDD, 
which uses a deep neural network jointly trained to map the data into a 
hypersphere of minimal volume. Deep SVDD does not suffer from two 
limitations of OCSVM and the original SVDD relating to quadratically 
scaling with the number of samples and large amount of memory 
requirement to store the support vectors. An important problem usually 
encountered in deep one-class classification is feature map collapse 
without regularization (Ruff et al., 2021). Possible solutions for this 
problem include regularization (Wu et al., 2020), freezing the embed-
dings (Erfani et al., 2016), or using pseudo-labelling (Golan and 
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El-Yaniv, 2018). A variant of one-class SVM for time-series is introduced 
in (Shen et al., 2020) in which a dilated recurrent neural network with 
skip connections is used to capture temporal connections. A one-class 
objective for time series is then obtained by using multiple hyper-
spheres in a hierarchical clustering process. Oza and Patel (2019) pro-
posed a one-class Convolutional Neural Network (CNN), in which a 
pre-trained CNN is trained using pseudo-negative class created from 
zero-centered Gaussian noise in the latent space. Unlike other ap-
proaches, this method allows the use of transfer learning (Weiss et al., 
2016) for AD. 

Deep generative-based ADMs use deep generative models such as 
GAN to generate artificial anomalies and a discriminator will learn to 
differentiate between an anomaly and a normal instance. A GAN consists 
of a generator and a discriminator network in which these two networks 
are adversarially trained with the generator trained to deceive the 
discriminator, and the discriminator trained to differentiate between the 
input and the output by the generator Ruff et al. (2021). In Perera et al. 
(2019), the authors proposed OCGAN, which exclusively constrains the 
latent space to represent the given class. An adversarial discriminator is 
used in the input space. A GAN-inspired method is proposed in Sabo-
krou et al. (2018), in which two deep networks compete for AD. One 
network performs novelty detection, while the other enhances the 
normal samples and distorts the outliers. The method proposed in Pid-
horskyi et al. (2018) followed a probabilistic approach and computed 
the probability that a sample was generated by the inlier distribution. 
This is achieved by linearizing the parameterized manifold capturing the 
underlying inlier distribution and factorizing the probability calculation 
using local coordinates of the manifold tangent space. It should be noted 
that GAN suffers from significant problems relating to training stability 
(Ruff et al., 2021). Zenati et al. (2018) proposed Adversarially Learned 
Anomaly Detection (ALAD), which used bi-directional GAN to adver-
sarially derive learned features for AD while ensuring GAN stability 
during training, which leads to significantly improved performance. In 
Akcay et al. (2018), the authors introduced GANomaly, which used a 
conditional GAN to jointly model the generation of high-dimensional 
image space and the inference of latent space. 
Encoder-decoder-encoder subnetworks allowed the mapping of the 
input image to its latent representation, and the distance between the 
generated output image and the latent vectors are minimized. Among 
these methods, OCGAN is trained similarly to the original GAN, while 
other methods use different types of GAN such as bi-directional GAN, 
conditional GAN, and encoder-decoder-encoder subnetworks (e.g. 
GANomaly) to adversarially derive learned features for AD. It is noted 
that the instances generated by using deep generative ADMs models 
such as GAN are shown to be realistic compared to the real data. With 
the involvement of generated instances in the adversarial training 
methods, the deep generative ADMs models might obtain good perfor-
mance on some kinds of datasets. The drawback meanwhile is that these 
models are trained using an alternating optimization scheme, which 
usually does not provide stable outputs i.e. different runs may yield 
different outputs (Ruff et al., 2021). 

Self-supervised learning-based ADMs use a predefined auxiliary task 
to help the model distinguish between anomalies and normal instances 
without using labelled data (Ruff et al., 2021; Zhang et al., 2022). A wide 

range of auxiliary tasks has been proposed in self-supervised learning, 
such as colorization, rotation, cropping, or masked word prediction. 
Recent studies have also demonstrated that the representations learned 
from self-supervised tasks can improve AD performance, provided that 
the anomaly score and the auxiliary task are chosen correctly (Hojjati 
et al., 2022). There are two types of self-supervised learning for AD: 
self-predictive methods and contrastive methods. In self-predictive 
methods, a transformation is applied to the input sample and the 
model either predicts the applied transformation or reconstructs the 
original input. An example of self-predictive methods is CutPaste (Li 
et al., 2021), which notes that geometric transformations such as rota-
tion and translation are effective in learning semantic concepts but not 
regularity. In CutPaste, small random rectangular regions are cut and 
pasted at another location. A deep network is then trained to distinguish 
normal images from these images. Another example is the method in 
Zhang et al., (2022) which used an auxiliary classification task in which 
normal examples are combined with instances sampled from several 
distributions, such as Gaussian and Poisson, for the method to learn the 
normal data features. In contrastive methods, the objective of the 
auxiliary task is to emphasize the contrast between “positive” and 
”negative” samples to make the models learn more effectively. In Tack 
et al. (2020), the authors proposed Contrasting Shifted instances (CSI), 
which seeks to contrast a given example not only with other instances 
but also distributionally shifted augmentations of itself. It should be 
noted that despite many successes in multiple areas, until recently 
self-supervised learning AD has been mostly applied to image data and 
other types of data in which the auxiliary task can be easily defined 
(Hojjati et al., 2022), which might not be the case for many domains. 
Self-supervised ADMs have a significant advantage in which the pretext 
tasks which these methods use do not require ground truth labels when 
training the detection model. This makes them suitable for a wider range 
of datasets where obtaining ground truth information can be costly or 
unavailable (Ruff et al., 2021). On the other hand, the appropriate 
pretext task needs to be carefully chosen to obtain a good performance. 
For example, Hojjati et al. (2022) suggested that some methods based on 
pretext tasks like geometric transformations and contrastive methods 
work well for detecting semantic anomalies, whereas other methods 
based on pixel-level transformations are more appropriate for defect 
detection. Since it is difficult to define the auxiliary task for GED, in this 
paper we do not include self-supervised ADMs in our experiments. 

3. Experimental studies 

Fig. 1 shows how a ML-based AD model for GED works. Measure-
ment data for training are first processed, for example, missing values 
are removed, or some measurements are transformed and normalized 
before becoming the training data. A ML-based ADM is then trained on 
the training data to generate a detection model. Among ML paradigms 
with different settings, supervised and unsupervised ML are the most 
popular ones. In supervised learning, we have a labelled dataset D 
including N observations (x, yx), where x = (x1, x2,…, xD) is a feature 
vector that belongs to the input domain, and yx is the class label of x 
which belongs to the target domain. The relationship between x and yx 
can be described by an unknown function f i.e., yx = f(x). Supervised 

Fig. 1. The model of a gross error detection system using machine learning-based anomaly detection methods.  
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ML algorithms aim to propose an approximation (also called hypothesis) 
g for the function f . On that basis, we apply g to predict the class label of 
unseen samples. On the other hand, the class label yx is not given in 
unsupervised learning so the learning algorithm focuses on exploring 
hidden knowledge and patterns of the data from N feature vectors only. 
For the GED problem, when the GE information of measurement data is 
given, we can train a supervised ML algorithm on the training data. 
Several methods mentioned in Section 2 like the Bayesian approach 
(Yuan et al., 2015; Dobos et al., 2021) and Neural Network (Reddy and 
Mavrovouniotis, 1998) used this ML paradigm to train a GED system. 
However, to our knowledge and experience, the requirement concerning 
available GE information is hard to fulfil in real-life applications because 
of an expensive checking inspection on the historical measurement data. 
The setting of unsupervised ML meanwhile seems to be more realistic 
and feasible for the problem of GED. The details of each component and 
process of the proposed model in Fig. 1 are given as follows: 

Data preparation: Due to the heterogeneous origin and setup of data 
acquisition devices, real-world data may be collected with either 
redundant, incomplete, or inconsistent information. Applying ML algo-
rithms to that raw data may not obtain high-quality results as they 
would fail to identify patterns effectively. Therefore, collected mea-
surement data may need to be prepared before it can be used as training 
data for an ADM. Data preparation is the process of sorting and filtering 
the raw data to remove unnecessary and inaccurate data to make it in a 
suitable form for further analysis and processing. There is no unique set 
of tasks in the data preparation process, however, the process for GED 
systems typically involves several main tasks including (i) data struc-
turing: the data is modelled and organized to meet the analytics re-
quirements (ii) data cleansing: missing and inconsistent information on 
the data is imputed and resolved (iii) data selection: a subset of redun-
dant readings was selected (iv) data transformation: the data is trans-
formed into a unified and usable format. 

Data preparation was found in several existing studies concerning 
the GED problem including the data transformation in the PCA test of 
Tong and Crowe (1995) and data selection and transformation in the 
PCA and Neural Network-based method of Reddy and Mavrovouniotis 
(1998). PCA serves as the foundation for multivariate data analysis using 
projection methods. It is frequently used to obtain lower-dimensional 
data while retaining most of the data’s variation by projecting each 
data point onto only the first few principal components. PCA is impor-
tant in terms of representing multivariate data in a smaller set of vari-
ables which can improve the observation of trends, clusters, and outliers 
in the data. The measurement selection procedure in redundant readings 
was also mentioned in Reddy and Mavrovouniotis (1998) in which 44 
variables were selected among 65 variables of readings. The selected 
variables were then transformed by three sequential steps: replacing 
exhibited strong linear correlation by their first principal component 
score, mean-centering, and scaling into a specific range. 

In this study, we use PCA and Random Projection on measurement 
data for the data transformation. Like PCA, Random Projection (John-
son and Lindenstrauss, 1984; Nguyen et al., 2019) linear transformation 
in which the pairwise distance between pairs of points can be preserved 
with a specific probability and distortion level ε before and after con-
ducting a projection. Random projections are useful in dimension 
reduction if the dimension of the projected data is chosen to be lower 
than that of the original data. Random projections are simply obtained 
by using a p × q random matrix R = {rij} where p and q are the di-
mensions of the original data and projected data, respectively) and the 
{rij} are random variables such that E(rij) = 0, Var(rij) = 1. Several 
forms of {rij} are given by Nguyen et al. (2019):  

• Plus-minus-one or Bernoulli random projection: R = 1/ ̅̅̅q√
{rij}

where rij is randomly chosen from {− 1, 1} such that Pr(rij = 1) =

Pr(rij = − 1) = 1/2.  
• Achlioptas random projection: R = 1/ ̅̅̅q√

{rij} where rij is randomly 
chosen from { −

̅̅̅
3

√
, 0,

̅̅̅
3

√
} such that 

Pr(rij =
̅̅̅
3

√
) = Pr(rij = −

̅̅̅
3

√
) = 1/6 and Pr(rij =

̅̅̅
3

√
) = 2/3.  

• Normal random projection: R = 1/ ̅̅̅q√
{rij} where rij is distributed 

according to N (0, 1) distribution. 

Training data: The training data is the output of data preparation in 
a well-prepared instance to train a detection model. In the model in 
Fig. 1, the training dataset is fed to an ADM to teach it how to detect the 
presence of GEs. In this study, we generated training data on 16 systems 
collected from the literature (please find these systems’ information in 
Fig. S5-S20 in the Supplement Material). Our study covered a large 
range of systems, starting from only 3 streams up to 50 streams. All the 
selected systems were introduced in the benchmark paper from the GED 
problem (do Valle et al., 2018). Table S.9. in the Supplement Material 
shows the number of streams of the benchmark scenarios, and the 
characteristics of the streams (parallel stream, recycled stream, or 

Table 1 
The main approaches in anomaly detection using machine learning and deep 
learning.  

Deep Learning (DL) 
based, or Machine 
Learning (ML) 
based 

Approach References 

ML Reconstruction- 
based models 

Autoencoders (Ruff et al., 2018), 
PCA (Shyu et al., 2003), SOD ( 
Kriegel et al., 2009) 

One-class 
classification models 

One-class SVM (Wang et al., 2007), 
SVDD (Tax and Duin, 2004), 
Elliptic Envelope (Hardin and 
Rocke, 2004) 

Density estimation 
and probability 
models 

GMM (Amruthnath and Gupta, 
2018), Kernel density estimator ( 
Kim and Scott, 2012), Histogram 
estimator (Ruff et al., 2021), ECOD 
(Li et al., 2022), COPOD (Li et al., 
2020), LODA (Pevny, 2016), HBOS 
(Goldstein and Dengel, 2012) 

Proximity-based 
models 

Isolation Forest (Liu et al., 2009), 
LOF (Breunig et al., 2000), ( 
Angiulli and Pizzuti, 2002), ABOD ( 
Kriegel et al., 2008), (Almardeny 
et al., 2020), COF (Tang et al., 
2002), KNN (Ruff et al., 2021), 
LMDD (Arning et al., 1996), ROD ( 
Almardeny et al., 2020) 

DL Reconstruction- 
based models 

Denoising autoencoders (Zhou and 
Paffenroth, 2017), Variational 
autoencoders (VAE) (Ruff et al., 
2021), Robust autoencoder ( 
Chalapathy et al., 2017), 
L2-normalized deep autoencoder ( 
Aytekin et al., 2018), 
Memory-augmented deep 
autoencoder (Gong et al., 2019), 
Collaborative deep autoencoder ( 
Liu et al., 2021), Adversarial 
Autoencoder (Principi et al., 2017), 
RNN-based autoencoder (Lu et al., 
2017), SO-GAAL (Liu et al., 2020) 

One-class 
classification models 

Hybrid DBN-1SVM (Erfani et al., 
2016), Deep SVDD (Ruff et al., 
2018), RNN-based OCSVM (Shen 
et al., 2020), One-class CNN (Oza 
and Patel, 2019), Robust Deep PCA 
(Chalapathy et al., 2017) 

Deep generative 
models 

OCGAN (Perera et al., 2019), ( 
Sabokrou et al., 2018), (Pidhorskyi 
et al., 2018), ALAD (Zenati et al., 
2018), GANomaly (Akcay et al., 
2018) 

Self-supervised 
models 

CSI (Tack et al., 2020), (Zhang 
et al., 2022), CutPaste (Li et al., 
2021)  
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measurement) that can be used as a reference when selecting the right 
datasets for the experiments. In these systems, the true values of mea-
surements and the variances of random errors associated with all 
streams were given. First, the random error was generated under the 
assumption of a normal distribution with zero mean and given variance. 
The generated random errors for all streams were added to the true 
measurements to create the base case data i.e., no-GEs data. Then GEs 
were generated for all streams and added to those base cases. In this 
work, each GE was generated under a uniform distribution between −
25% to +25% of the associated measurement value. The training data 
for a system of m streams contains 1000 samples with non-GE, 10 
samples with GE on the mth stream. Hence, the training data includes m 
∗10 + 1000 samples x = (x1, x2, …, xD). The ground truth of GE pre-
sentation is not required for the training since we experiment on unsu-
pervised ADMs. The details of the systems in the experiments can be 
found in the Supplemental Material. 

ADM and Detection Model: To train ADMs effectively, it is neces-
sary to have properly initialized hyper-parameters. Each method has a 
different set of hyper-parameters that normally affect its performance. In 
DL-based methods, the number of neurons in each layer and the number 
of layers are two important hyper-parameters to specify the architecture 
of the DL system. The optimiser which would find the optimal weights of 
neurons in the network can yield very different detection results ac-
cording to different choices, although recent optimisers such as Adam 
have improved the optimisation process considerably. The learning rate 
of the optimiser is also an important hyper-parameter since small 
learning rates might make the computational time increase while large 
learning rates might make the model oscillate. Finally, the number of 
epochs, which is the number of times a DL-based method passes through 

the dataset during training, needs to be determined carefully to reduce 
underfitting or overfitting situations during the training. Meanwhile, the 
parameters of ML-based methods are usually approach-dependent. For 
example, the proximity approach such as LOF and KNN requires the 
number of neighbours from which the anomalies can be determined. 
Tree-based methods like Isolation Forest require a number of trees from 
which to create an ensemble of trees for collaborated detection. The 
density-based methods like LODA require the number of histogram bins 
and the number of random cuts to determine the density of the training 
data. 

In the experiments, we used 19 ML or DL-based ADMs from 4 
different categories of ADMs (please see Table 1) to ensure that the 
selected methods cover all approaches to handle anomalous instances. 
The selected methods have been introduced recently or are state-of-the- 
art models for AD (Chandola et al., 2009) and have not yet been applied 
to the problem of GED. Four ML-based methods namely Isolation Forest 
(Liu et al., 2009), LOF (Breunig et al., 2000), One-class SVM (Wang 
et al., 2007), and Elliptic Envelope (Hardin and Rocke, 2004) are 
implemented by using the Scikit-learn library (Pedregosa, 2011), while 
the remaining methods are implemented by using the PyOD library 
(Zhao et al., 2019) in which three models, VAE (Ruff et al., 2021), 
SO-GAAL (Liu et al., 2020), and Deep SVDD (Ruff et al., 2018) are 
DL-based while the remaining are ML-based methods. Among the 
methods implemented in the Scikit-learn library, two are one-class 
classification models (One-class SVM and Elliptic Envelope) while the 
other two are proximity-based methods (Isolation Forest and LOF). 
Meanwhile, among the methods implemented in the PyOD library, five 
methods are proximity-based (ABOD (Kriegel et al., 2008), COF (Tang 
et al., 2002), KNN (Ruff et al., 2021), LMDD (Arning et al., 1996), ROD 
(Almardeny et al., 2020)), four methods are density estimation and 
probability-based (ECOD (Li et al., 2022), COPOD (Li et al., 2020), 
LODA (Pevny, 2016), HBOS (Goldstein and Dengel, 2012)), five 
methods are reconstruction-based (Autoencoder (Ruff et al., 2018), VAE 
(Ruff et al., 2021), PCA (Shyu et al., 2003), SOD (Kriegel et al., 2009), 
SO-GAAL (Liu et al., 2020)), and one method is one-class classification 
method (Deep SVDD (Ruff et al., 2018)). 

In the experiment, we used the values of the hyperparameters pro-
vided by the authors of the original papers or ML/DL libraries, which in 
our opinion can give a good basis for comparison for two reasons. First, 
practitioners may face challenges to use some models arising from areas 
in which they are not experts because of the requirements on the 
knowledge and experience for the tuning parameter procedure. While it 
may be possible through tuning to achieve better performances on 
specific datasets, we aim to demonstrate that competitive results to the 
benchmark algorithms (statistical tests) can be obtained with the pre- 
defined hyperparameters, obviating the need for an additional tuning 
overhead for each application. By using the default or suggested 
hyperparameters’ value for the models, we can provide a more achiev-
able result that would fit most applications. Besides, although tuning the 
hyperparameters of experimental methods can improve GE detection 
results, it normally would take longer if we would try to showcase the 
methods with different hyperparameters, especially for DL-based 
models. The detailed hyper-parameter settings of each method in the 
experiment are given in Table 2. 

Testing process: In the model in Fig. 1, a test sample is first passed 
through the data preparation process. All preparation steps applied to 
measurement data for training once again will be applied to each test 
sample in the same order. The data preparation step outputs the suitable 
format to input to the detection model. In this study, test samples were 
also generated on 16 systems to study the performance of ADMs. We 
generated two test datasets for each system in which each GE was 
generated under a uniform distribution between − 5% and +5% of the 
associated measurement value for the first one, and between − 10% and 
+10% of the associated measurement value for the second one. It is 
recognised that the first test dataset is more challenging than the second 
one for the GED task because of the smaller magnitudes of GEs. The data 

Table 2 
Anomaly detection models used in the experiments and their hyperparameter 
settings.  

Model name Library Hyper-parameters 

Isolation Forest 
(denoted by iForest) 

Scikit- 
learn 

Number of trees: 500. 

Local Outlier Factor 
(denoted by LOF) 

Scikit- 
learn 

Number of neighbours: 5. 

One-class SVM 
(denoted by OCSVM) 

Scikit- 
learn 

RBF kernel. Nu: 0.5. 

Elliptic Envelope Scikit- 
learn 

Proportion of outliers in the dataset: 0.1. 

KNN PyOD Number of neighbours: 5. 
ECOD PyOD Proportion of outliers in the dataset: 0.1. 
COPOD PyOD Proportion of outliers in the dataset: 0.1. 
ABOD PyOD Number of neighbours: 5. 
ROD PyOD Proportion of outliers in the dataset: 0.1. 
LODA PyOD Number of histogram bins: 10. Number of 

random cuts: 100. 
Autoencoder PyOD Number of hidden neurons per layer: ( 

Krizhevsky et al., 2012; Congli et al., 2006;  
Congli et al., 2006; Krizhevsky et al., 2012). 
Activation function: ReLU. Number of 
epochs: 100. Optimiser: Adam. 

VAE PyOD Number of neurons in encoder: [128], ( 
Krizhevsky et al., 2012; Congli et al., 2006). 
Number of neurons in decoder: (Congli et al., 
2006; Krizhevsky et al., 2012),[128]. 
Number of epochs: 100. Optimiser: Adam. 

SO-GAAL PyOD Discriminator learning rate: 0.01. Generator 
learning rate: 0.0001. Stop epoch: 20. 
Optimiser: SGD. 

Deep SVDD PyOD Number of neurons per hidden layer: ( 
Krizhevsky et al., 2012; Congli et al., 2006). 
Activation function: ReLU. Number of 
epochs: 100. Optimiser: Adam. 

PCA PyOD Proportion of outliers in the dataset: 0.1. 
LMDD PyOD Number of iterations: 50. 
COF PyOD Number of neighbours: 20. 
HBOS PyOD Number of bins: 10. 
SOD PyOD Number of neighbours: 20.  

D. Dobos et al.                                                                                                                                                                                                                                   



Computers and Chemical Engineering 175 (2023) 108263

9

Ta
bl

e 
3 

Th
e 

A
cc

ur
ac

y 
of

 th
e 

19
 e

xp
er

im
en

ta
l A

D
M

s 
on

 th
e 

16
 d

at
as

et
s 

w
ith

 ±
5%

 o
f G

Es
.  

 

iF
or

es
t 

LO
F 

O
CS

V
M

 
El

lip
ti

c 
en

ve
lo

pe
 

K
N

N
 

EC
O

D
 

CO
PO

D
 

A
BO

D
 

R
O

D
 

LO
D

A
 

A
ut

oe
nc

od
er

 
V

A
E 

SO
-G

A
A

L 
D

ee
p 

SV
D

D
 

PC
A

 
LM

D
D

 
CO

F 
H

BO
S 

SO
D

 

P1
 

0.
49

9 
0.

45
4 

0.
68

7 
0.

49
1 

0.
49

7 
0.

32
3 

0.
36

0 
0.

46
3 

0.
31

1 
0.

39
4 

0.
45

4 
0.

47
2 

0.
40

7 
0.

28
9 

0.
45

8 
0.

45
1 

0.
28

7 
0.

46
2 

0.
28

4 
P2

 
0.

43
0 

0.
52

7 
0.

78
8 

0.
57

2 
0.

56
1 

0.
22

4 
0.

21
5 

0.
53

5 
0.

21
3 

0.
36

1 
0.

48
8 

0.
52

1 
0.

29
2 

0.
16

3 
0.

49
7 

0.
39

2 
0.

17
1 

0.
39

3 
0.

18
2 

P3
 

0.
42

1 
0.

55
3 

0.
75

6 
0.

80
4 

0.
51

7 
0.

16
2 

0.
12

0 
0.

50
5 

0.
16

0 
0.

24
6 

0.
74

6 
0.

78
4 

0.
07

7 
0.

15
2 

0.
77

8 
0.

15
6 

0.
25

0 
0.

40
6 

0.
11

3 
P4

 
0.

47
5 

0.
63

1 
0.

83
8 

0.
64

6 
0.

63
7 

0.
21

5 
0.

21
1 

0.
62

0 
0.

22
2 

0.
47

6 
0.

58
6 

0.
60

9 
0.

14
3 

0.
15

9 
0.

56
1 

0.
40

6 
0.

17
2 

0.
39

5 
0.

18
6 

P5
 

0.
30

7 
0.

35
7 

0.
72

9 
0.

36
8 

0.
37

6 
0.

21
1 

0.
20

7 
0.

34
8 

0.
19

5 
0.

18
9 

0.
30

9 
0.

33
7 

0.
11

1 
0.

14
5 

0.
35

2 
0.

47
3 

0.
13

2 
0.

30
3 

0.
13

9 
P6

 
0.

21
3 

0.
20

5 
0.

51
4 

0.
20

9 
0.

21
0 

0.
20

6 
0.

20
8 

0.
21

2 
0.

19
9 

0.
20

4 
0.

20
6 

0.
20

6 
0.

19
4 

0.
20

4 
0.

20
6 

0.
40

6 
0.

16
1 

0.
21

2 
0.

12
5 

P7
 

0.
24

3 
0.

35
8 

0.
68

3 
0.

35
7 

0.
38

1 
0.

19
0 

0.
18

9 
0.

33
7 

0.
19

7 
0.

16
8 

0.
29

2 
0.

30
3 

0.
09

1 
0.

16
6 

0.
31

3 
0.

32
7 

0.
28

7 
0.

23
3 

0.
12

6 
P8

 
0.

25
9 

0.
21

1 
0.

91
7 

0.
24

6 
0.

23
2 

0.
18

7 
0.

18
0 

0.
20

1 
0.

16
3 

0.
19

5 
0.

21
9 

0.
24

3 
0.

08
3 

0.
16

6 
0.

22
1 

0.
46

7 
0.

29
2 

0.
21

9 
0.

11
9 

P9
 

0.
21

4 
0.

19
6 

0.
92

3 
0.

25
5 

0.
17

4 
0.

16
2 

0.
17

3 
0.

19
3 

0.
16

6 
0.

17
1 

0.
20

9 
0.

22
6 

0.
07

7 
0.

15
5 

0.
21

6 
0.

27
7 

0.
27

4 
0.

22
3 

0.
19

5 
P1

0 
0.

24
8 

0.
35

4 
0.

68
5 

0.
35

1 
0.

34
4 

0.
15

2 
0.

12
3 

0.
33

8 
0.

13
7 

0.
14

6 
0.

20
2 

0.
22

8 
0.

19
7 

0.
09

9 
0.

21
0 

0.
36

2 
0.

10
0 

0.
28

9 
0.

10
0 

P1
1 

0.
19

9 
0.

17
4 

0.
92

3 
0.

18
4 

0.
21

7 
0.

17
3 

0.
16

6 
0.

19
9 

0.
15

2 
0.

18
6 

0.
16

9 
0.

18
4 

0.
07

7 
0.

13
5 

0.
18

7 
0.

24
3 

0.
25

3 
0.

21
1 

0.
15

3 
P1

2 
0.

26
5 

0.
57

3 
0.

78
6 

0.
63

5 
0.

56
9 

0.
17

3 
0.

15
7 

0.
60

6 
0.

15
8 

0.
17

7 
0.

52
5 

0.
59

3 
0.

07
7 

0.
22

8 
0.

60
5 

0.
31

7 
0.

11
5 

0.
29

3 
0.

11
0 

P1
3 

0.
18

1 
0.

09
3 

0.
57

8 
0.

16
7 

0.
17

8 
0.

15
2 

0.
15

2 
0.

14
5 

0.
14

8 
0.

17
1 

0.
15

9 
0.

15
9 

0.
15

8 
0.

20
5 

0.
16

5 
0.

27
5 

0.
07

9 
0.

18
3 

0.
07

5 
P1

4 
0.

32
8 

0.
06

6 
0.

94
7 

0.
25

6 
0.

29
1 

0.
15

1 
0.

11
9 

0.
10

5 
0.

14
9 

0.
15

1 
0.

08
0 

0.
08

5 
0.

04
0 

0.
13

7 
0.

08
3 

0.
39

7 
0.

18
5 

0.
21

6 
0.

18
3 

P1
5 

0.
24

8 
0.

05
2 

0.
69

1 
0.

08
2 

0.
16

4 
0.

15
7 

0.
14

0 
0.

06
3 

0.
09

8 
0.

14
8 

0.
06

8 
0.

07
1 

0.
03

4 
0.

21
2 

0.
07

0 
0.

16
3 

0.
19

5 
0.

16
5 

0.
17

2 
P1

6 
0.

35
5 

0.
03

2 
0.

98
0 

0.
03

3 
0.

07
7 

0.
16

6 
0.

15
1 

0.
03

1 
0.

13
9 

0.
13

4 
0.

02
0 

0.
02

0 
0.

02
0 

0.
14

7 
0.

02
0 

0.
33

4 
0.

09
1 

0.
21

7 
0.

03
3 

A
ve

 
0.

30
5 

0.
30

2 
0.

77
7 

0.
35

4 
0.

33
9 

0.
18

8 
0.

17
9 

0.
30

6 
0.

17
5 

0.
22

0 
0.

29
6 

0.
31

5 
0.

13
0 

0.
17

3 
0.

30
9 

0.
34

0 
0.

19
0 

0.
27

6 
0.

14
3 

 

Ta
bl

e 
4 

Th
e 

A
cc

ur
ac

y 
of

 th
e 

19
 e

xp
er

im
en

ta
l A

D
M

s 
on

 th
e 

16
 d

at
as

et
s 

w
ith

 ±
10

%
 o

f G
Es

.  
 

iF
or

es
t 

LO
F 

O
CS

V
M

 
El

lip
ti

c 
en

ve
lo

pe
 

K
N

N
 

EC
O

D
 

CO
PO

D
 

A
BO

D
 

R
O

D
 

LO
D

A
 

A
ut

oe
nc

od
er

 
V

A
E 

SO
-G

A
A

L 
D

ee
p 

SV
D

D
 

PC
A

 
LM

D
D

 
CO

F 
H

BO
S 

SO
D

 

P1
 

0.
86

6 
0.

79
1 

0.
84

9 
0.

86
1 

0.
86

7 
0.

32
3 

0.
34

4 
0.

84
7 

0.
32

1 
0.

65
0 

0.
80

5 
0.

83
0 

0.
50

5 
0.

53
3 

0.
82

1 
0.

47
6 

0.
29

8 
0.

80
9 

0.
30

7 
P2

 
0.

81
4 

0.
84

7 
0.

90
2 

0.
88

5 
0.

87
8 

0.
22

1 
0.

19
9 

0.
84

5 
0.

19
5 

0.
30

0 
0.

88
6 

0.
89

6 
0.

29
4 

0.
37

2 
0.

89
7 

0.
47

5 
0.

18
0 

0.
54

0 
0.

21
1 

P3
 

0.
67

0 
0.

77
9 

0.
84

5 
0.

99
7 

0.
77

5 
0.

16
5 

0.
11

7 
0.

73
7 

0.
17

3 
0.

29
0 

0.
99

8 
0.

99
8 

0.
16

6 
0.

45
9 

0.
99

8 
0.

31
4 

0.
15

2 
0.

50
5 

0.
10

9 
P4

 
0.

88
7 

0.
88

0 
0.

92
6 

0.
91

6 
0.

90
7 

0.
21

3 
0.

19
2 

0.
88

0 
0.

18
8 

0.
88

7 
0.

93
0 

0.
94

0 
0.

14
3 

0.
23

5 
0.

92
7 

0.
48

5 
0.

17
0 

0.
47

9 
0.

19
3 

P5
 

0.
62

8 
0.

57
0 

0.
88

8 
0.

73
8 

0.
68

8 
0.

19
7 

0.
18

5 
0.

61
3 

0.
18

7 
0.

39
6 

0.
72

6 
0.

75
6 

0.
11

1 
0.

21
6 

0.
76

3 
0.

45
0 

0.
14

7 
0.

41
1 

0.
17

2 
P6

 
0.

24
5 

0.
23

2 
0.

57
3 

0.
25

8 
0.

24
6 

0.
21

2 
0.

21
3 

0.
25

5 
0.

20
8 

0.
25

7 
0.

24
8 

0.
25

9 
0.

20
1 

0.
20

6 
0.

24
8 

0.
37

2 
0.

18
6 

0.
23

9 
0.

14
3 

P7
 

0.
36

5 
0.

55
0 

0.
76

0 
0.

56
9 

0.
56

9 
0.

17
7 

0.
16

9 
0.

53
3 

0.
20

0 
0.

31
4 

0.
56

0 
0.

56
6 

0.
22

2 
0.

21
8 

0.
56

3 
0.

36
5 

0.
18

8 
0.

27
2 

0.
13

5 
P8

 
0.

52
4 

0.
39

8 
0.

91
7 

0.
63

8 
0.

44
6 

0.
17

2 
0.

15
0 

0.
39

6 
0.

15
2 

0.
45

2 
0.

58
1 

0.
62

6 
0.

08
3 

0.
18

4 
0.

59
2 

0.
34

3 
0.

26
6 

0.
29

3 
0.

15
0 

P9
 

0.
34

9 
0.

38
8 

0.
92

3 
0.

51
4 

0.
36

0 
0.

16
2 

0.
15

1 
0.

37
7 

0.
17

3 
0.

26
3 

0.
49

9 
0.

52
0 

0.
07

7 
0.

18
5 

0.
50

5 
0.

17
8 

0.
27

3 
0.

30
5 

0.
15

6 
P1

0 
0.

45
6 

0.
74

1 
0.

87
1 

0.
76

5 
0.

68
9 

0.
15

6 
0.

11
9 

0.
59

5 
0.

15
8 

0.
50

3 
0.

76
7 

0.
78

7 
0.

17
3 

0.
14

4 
0.

77
3 

0.
29

7 
0.

10
3 

0.
47

0 
0.

10
8 

P1
1 

0.
37

2 
0.

30
3 

0.
92

3 
0.

55
8 

0.
36

6 
0.

15
0 

0.
12

9 
0.

35
4 

0.
14

6 
0.

28
6 

0.
51

3 
0.

55
0 

0.
07

7 
0.

19
8 

0.
56

3 
0.

21
9 

0.
14

2 
0.

31
6 

0.
12

1 
P1

2 
0.

45
9 

0.
80

2 
0.

88
2 

0.
92

0 
0.

76
7 

0.
16

4 
0.

14
5 

0.
78

8 
0.

15
9 

0.
36

8 
0.

94
9 

0.
95

9 
0.

32
0 

0.
64

4 
0.

95
6 

0.
36

3 
0.

09
5 

0.
36

4 
0.

12
8 

P1
3 

0.
26

6 
0.

09
5 

0.
65

8 
0.

27
9 

0.
28

0 
0.

14
8 

0.
12

8 
0.

21
3 

0.
14

4 
0.

26
3 

0.
27

0 
0.

27
3 

0.
19

7 
0.

19
1 

0.
27

7 
0.

16
6 

0.
12

9 
0.

24
5 

0.
13

5 
P1

4 
0.

48
2 

0.
06

7 
0.

95
2 

0.
76

2 
0.

63
4 

0.
14

8 
0.

10
9 

0.
30

3 
0.

13
5 

0.
53

8 
0.

75
3 

0.
75

8 
0.

04
0 

0.
33

3 
0.

75
4 

0.
26

3 
0.

07
7 

0.
26

4 
0.

07
5 

P1
5 

0.
36

8 
0.

05
5 

0.
81

3 
0.

36
6 

0.
40

6 
0.

15
1 

0.
12

0 
0.

15
7 

0.
10

9 
0.

24
1 

0.
33

6 
0.

34
7 

0.
03

4 
0.

25
8 

0.
34

4 
0.

28
5 

0.
17

1 
0.

28
0 

0.
21

9 
P1

6 
0.

52
5 

0.
03

7 
0.

98
0 

0.
03

9 
0.

27
8 

0.
17

2 
0.

15
4 

0.
05

7 
0.

14
3 

0.
12

8 
0.

02
0 

0.
02

0 
0.

02
0 

0.
22

2 
0.

02
0 

0.
40

5 
0.

04
9 

0.
30

8 
0.

03
7 

A
ve

 
0.

51
7 

0.
47

1 
0.

85
4 

0.
62

9 
0.

57
2 

0.
18

3 
0.

16
4 

0.
49

7 
0.

17
4 

0.
38

4 
0.

61
5 

0.
63

0 
0.

16
6 

0.
28

7 
0.

62
5 

0.
34

1 
0.

16
4 

0.
38

1 
0.

15
0 

 

D. Dobos et al.                                                                                                                                                                                                                                   



Computers and Chemical Engineering 175 (2023) 108263

10

Ta
bl

e 
5 

Th
e 

O
P 

of
 th

e 
19

 e
xp

er
im

en
ta

l A
D

M
s 

on
 th

e 
16

 d
at

as
et

s 
w

ith
 ±

5%
 o

f G
Es

.  
 

iF
or

es
t 

LO
F 

O
CS

V
M

 
El

lip
ti

c 
En

ve
lo

pe
 

K
N

N
 

EC
O

D
 

CO
PO

D
 

A
BO

D
 

R
O

D
 

LO
D

A
 

A
ut

oe
nc

od
er

 
V

A
E 

SO
-G

A
A

L 
D

ee
p 

SV
D

D
 

PC
A

 
LM

D
D

 
CO

F 
H

BO
S 

SO
D

 

P1
 

0.
36

5 
0.

30
7 

0.
73

9 
0.

34
9 

0.
36

3 
0.

11
6 

0.
15

3 
0.

31
4 

0.
09

7 
0.

21
8 

0.
30

3 
0.

32
6 

0.
24

3 
0.

08
3 

0.
30

7 
0.

33
6 

0.
06

4 
0.

31
1 

0.
05

6 
P2

 
0.

34
5 

0.
46

0 
0.

83
0 

0.
51

1 
0.

50
0 

0.
10

1 
0.

08
5 

0.
46

8 
0.

08
4 

0.
27

0 
0.

41
3 

0.
45

0 
0.

19
0 

0.
03

6 
0.

42
3 

0.
31

3 
0.

03
5 

0.
30

9 
0.

04
7 

P3
 

0.
37

7 
0.

51
9 

0.
77

3 
0.

79
0 

0.
48

3 
0.

09
5 

0.
04

7 
0.

46
7 

0.
09

1 
0.

18
5 

0.
72

6 
0.

76
7 

0.
00

0 
0.

09
1 

0.
76

2 
0.

08
6 

0.
18

7 
0.

36
1 

0.
03

9 
P4

 
0.

39
4 

0.
57

8 
0.

88
0 

0.
59

4 
0.

58
3 

0.
09

0 
0.

08
0 

0.
56

4 
0.

09
4 

0.
39

6 
0.

52
4 

0.
55

0 
0.

00
0 

0.
03

4 
0.

49
4 

0.
31

5 
0.

03
8 

0.
30

4 
0.

05
2 

P5
 

0.
22

7 
0.

28
4 

0.
75

7 
0.

29
5 

0.
30

5 
0.

11
9 

0.
10

9 
0.

27
4 

0.
09

8 
0.

09
7 

0.
22

8 
0.

25
9 

0.
00

0 
0.

04
8 

0.
27

8 
0.

43
9 

0.
02

3 
0.

22
7 

0.
03

1 
P6

 
0.

11
5 

0.
10

5 
0.

51
4 

0.
10

9 
0.

11
0 

0.
10

6 
0.

10
8 

0.
11

3 
0.

09
8 

0.
10

3 
0.

10
6 

0.
10

7 
0.

09
1 

0.
10

6 
0.

10
5 

0.
37

0 
0.

04
4 

0.
11

4 
0.

00
1 

P7
 

0.
17

7 
0.

30
1 

0.
69

8 
0.

30
0 

0.
32

6 
0.

11
6 

0.
11

2 
0.

27
7 

0.
12

3 
0.

09
2 

0.
22

9 
0.

24
2 

0.
00

0 
0.

09
6 

0.
25

3 
0.

27
1 

0.
22

0 
0.

16
6 

0.
03

9 
P8

 
0.

20
0 

0.
14

7 
1.

00
0 

0.
18

4 
0.

16
9 

0.
11

9 
0.

10
8 

0.
13

5 
0.

09
1 

0.
12

8 
0.

15
3 

0.
18

0 
0.

00
0 

0.
10

2 
0.

15
5 

0.
44

9 
0.

22
9 

0.
15

7 
0.

03
9 

P9
 

0.
15

4 
0.

13
6 

1.
00

0 
0.

19
7 

0.
11

1 
0.

09
6 

0.
10

7 
0.

13
1 

0.
10

1 
0.

10
7 

0.
14

6 
0.

16
5 

0.
00

0 
0.

09
6 

0.
15

4 
0.

23
4 

0.
21

4 
0.

16
7 

0.
12

8 
P1

0 
0.

19
3 

0.
30

6 
0.

69
7 

0.
30

2 
0.

29
6 

0.
08

8 
0.

05
6 

0.
28

9 
0.

07
2 

0.
08

5 
0.

14
1 

0.
16

9 
0.

14
2 

0.
03

7 
0.

15
0 

0.
32

8 
0.

03
1 

0.
24

0 
0.

03
1 

P1
1 

0.
13

7 
0.

11
2 

1.
00

0 
0.

11
9 

0.
15

9 
0.

10
8 

0.
09

9 
0.

13
9 

0.
08

5 
0.

12
5 

0.
10

3 
0.

11
9 

0.
00

0 
0.

07
3 

0.
12

2 
0.

19
0 

0.
19

2 
0.

15
1 

0.
08

3 
P1

2 
0.

20
7 

0.
54

0 
0.

80
7 

0.
60

6 
0.

53
5 

0.
10

7 
0.

08
8 

0.
57

7 
0.

08
9 

0.
11

5 
0.

48
7 

0.
56

1 
0.

00
0 

0.
17

2 
0.

57
5 

0.
26

4 
0.

04
1 

0.
24

0 
0.

03
6 

P1
3 

0.
13

6 
0.

03
9 

0.
58

5 
0.

12
0 

0.
13

3 
0.

10
5 

0.
10

2 
0.

09
6 

0.
09

9 
0.

12
5 

0.
11

1 
0.

11
1 

0.
11

1 
0.

16
6 

0.
11

8 
0.

24
1 

0.
02

1 
0.

13
9 

0.
01

7 
P1

4 
0.

30
4 

0.
02

8 
0.

98
4 

0.
22

6 
0.

26
3 

0.
11

8 
0.

08
3 

0.
06

8 
0.

11
5 

0.
11

8 
0.

04
2 

0.
04

7 
0.

00
0 

0.
10

8 
0.

04
5 

0.
38

2 
0.

15
1 

0.
18

7 
0.

14
9 

P1
5 

0.
22

6 
0.

01
9 

0.
70

0 
0.

05
0 

0.
13

7 
0.

12
9 

0.
11

1 
0.

03
0 

0.
06

7 
0.

12
0 

0.
03

5 
0.

03
8 

0.
00

0 
0.

19
2 

0.
03

7 
0.

13
6 

0.
16

7 
0.

13
8 

0.
14

3 
P1

6 
0.

34
5 

0.
01

3 
1.

00
0 

0.
01

4 
0.

05
9 

0.
15

1 
0.

13
5 

0.
01

2 
0.

12
3 

0.
11

9 
0.

00
0 

0.
00

0 
0.

00
0 

0.
13

4 
0.

00
0 

0.
32

4 
0.

07
3 

0.
20

3 
0.

01
3 

A
ve

 
0.

24
4 

0.
24

3 
0.

81
0 

0.
29

8 
0.

28
3 

0.
11

0 
0.

09
9 

0.
24

7 
0.

09
5 

0.
15

0 
0.

23
4 

0.
25

6 
0.

04
9 

0.
09

8 
0.

24
9 

0.
29

2 
0.

10
8 

0.
21

3 
0.

05
7 

 

Ta
bl

e 
6 

Th
e 

O
P 

of
 th

e 
19

 e
xp

er
im

en
ta

l A
D

M
s 

on
 th

e 
16

 d
at

as
et

s 
w

ith
 ±

10
%

 o
f G

Es
.  

 

iF
or

es
t 

LO
F 

O
CS

V
M

 
El

lip
ti

c 
En

ve
lo

pe
 

K
N

N
 

EC
O

D
 

CO
PO

D
 

A
BO

D
 

R
O

D
 

LO
D

A
 

A
ut

oe
nc

od
er

 
V

A
E 

SO
-G

A
A

L 
D

ee
p 

SV
D

D
 

PC
A

 
LM

D
D

 
CO

F 
H

BO
S 

SO
D

 

P1
 

0.
85

8 
0.

75
4 

0.
96

7 
0.

84
9 

0.
85

8 
0.

11
4 

0.
12

6 
0.

82
6 

0.
09

6 
0.

56
5 

0.
77

3 
0.

81
0 

0.
37

7 
0.

40
8 

0.
79

8 
0.

34
4 

0.
07

5 
0.

77
9 

0.
10

3 
P2

 
0.

79
4 

0.
83

4 
0.

96
6 

0.
87

7 
0.

86
9 

0.
09

8 
0.

06
6 

0.
83

1 
0.

06
1 

0.
19

9 
0.

87
7 

0.
88

9 
0.

19
0 

0.
27

9 
0.

89
0 

0.
39

9 
0.

05
0 

0.
47

9 
0.

09
0 

P3
 

0.
64

7 
0.

76
3 

0.
87

0 
1.

00
0 

0.
76

2 
0.

09
9 

0.
04

4 
0.

71
9 

0.
10

5 
0.

23
6 

1.
00

0 
1.

00
0 

0.
10

1 
0.

42
7 

1.
00

0 
0.

25
8 

0.
08

2 
0.

46
8 

0.
03

5 
P4

 
0.

87
6 

0.
86

9 
0.

98
8 

0.
91

0 
0.

89
8 

0.
08

8 
0.

05
8 

0.
86

7 
0.

05
3 

0.
87

5 
0.

92
4 

0.
93

5 
0.

00
0 

0.
12

7 
0.

92
1 

0.
40

0 
0.

03
7 

0.
40

3 
0.

06
7 

P5
 

0.
59

0 
0.

52
3 

0.
93

5 
0.

71
2 

0.
65

6 
0.

10
1 

0.
08

3 
0.

57
2 

0.
08

6 
0.

32
9 

0.
69

8 
0.

73
2 

0.
00

0 
0.

13
1 

0.
73

9 
0.

39
1 

0.
04

2 
0.

35
0 

0.
06

9 
P6

 
0.

15
2 

0.
13

6 
0.

58
2 

0.
16

5 
0.

15
3 

0.
11

1 
0.

10
7 

0.
16

2 
0.

10
6 

0.
16

5 
0.

15
5 

0.
16

7 
0.

09
6 

0.
10

6 
0.

15
3 

0.
31

8 
0.

07
0 

0.
14

4 
0.

02
1 

P7
 

0.
30

9 
0.

51
0 

0.
78

5 
0.

53
4 

0.
53

4 
0.

09
8 

0.
08

6 
0.

49
2 

0.
12

2 
0.

25
4 

0.
52

2 
0.

53
0 

0.
15

5 
0.

15
2 

0.
52

5 
0.

30
5 

0.
10

9 
0.

20
9 

0.
04

9 
P8

 
0.

48
9 

0.
35

0 
1.

00
0 

0.
61

2 
0.

40
2 

0.
10

1 
0.

07
3 

0.
34

6 
0.

07
6 

0.
41

1 
0.

54
8 

0.
59

9 
0.

00
0 

0.
12

2 
0.

56
1 

0.
29

3 
0.

20
3 

0.
23

9 
0.

07
3 

P9
 

0.
30

2 
0.

34
4 

1.
00

0 
0.

47
9 

0.
31

4 
0.

09
6 

0.
08

2 
0.

33
2 

0.
10

7 
0.

21
2 

0.
46

3 
0.

48
6 

0.
00

0 
0.

12
7 

0.
47

0 
0.

11
6 

0.
21

3 
0.

25
8 

0.
08

6 
P1

0 
0.

41
8 

0.
72

3 
0.

89
6 

0.
74

8 
0.

66
7 

0.
09

3 
0.

05
2 

0.
56

8 
0.

09
5 

0.
46

8 
0.

75
0 

0.
77

1 
0.

11
7 

0.
08

8 
0.

75
7 

0.
24

5 
0.

03
4 

0.
43

5 
0.

03
9 

P1
1 

0.
32

5 
0.

25
1 

1.
00

0 
0.

52
4 

0.
32

0 
0.

08
2 

0.
05

7 
0.

30
7 

0.
07

6 
0.

23
2 

0.
47

5 
0.

51
5 

0.
00

0 
0.

14
1 

0.
53

0 
0.

15
7 

0.
07

0 
0.

26
5 

0.
04

8 
P1

2 
0.

41
8 

0.
78

8 
0.

91
2 

0.
91

5 
0.

75
0 

0.
09

7 
0.

07
4 

0.
77

5 
0.

08
9 

0.
32

3 
0.

94
6 

0.
95

8 
0.

27
0 

0.
62

3 
0.

95
5 

0.
31

0 
0.

02
0 

0.
31

8 
0.

05
5 

P1
3 

0.
22

6 
0.

04
2 

0.
66

9 
0.

23
9 

0.
24

1 
0.

09
8 

0.
07

4 
0.

16
8 

0.
09

3 
0.

22
2 

0.
23

0 
0.

23
2 

0.
15

5 
0.

15
3 

0.
23

6 
0.

11
7 

0.
07

4 
0.

20
4 

0.
08

1 
P1

4 
0.

46
4 

0.
03

0 
0.

98
8 

0.
75

2 
0.

62
0 

0.
11

5 
0.

07
2 

0.
27

4 
0.

10
0 

0.
52

2 
0.

74
2 

0.
74

8 
0.

00
0 

0.
31

3 
0.

74
4 

0.
23

4 
0.

03
9 

0.
23

7 
0.

03
7 

P1
5 

0.
35

0 
0.

02
2 

0.
82

7 
0.

34
4 

0.
38

7 
0.

12
2 

0.
08

9 
0.

12
7 

0.
07

8 
0.

21
6 

0.
31

3 
0.

32
4 

0.
00

0 
0.

24
1 

0.
32

1 
0.

26
3 

0.
14

1 
0.

25
8 

0.
19

1 
P1

6 
0.

51
9 

0.
01

8 
1.

00
0 

0.
02

0 
0.

26
4 

0.
15

7 
0.

13
8 

0.
03

9 
0.

12
7 

0.
11

3 
0.

00
0 

0.
00

0 
0.

00
0 

0.
21

1 
0.

00
0 

0.
39

8 
0.

03
0 

0.
29

6 
0.

01
8 

A
ve

 
0.

48
4 

0.
43

5 
0.

89
9 

0.
60

5 
0.

54
3 

0.
10

4 
0.

08
0 

0.
46

3 
0.

09
2 

0.
33

4 
0.

58
9 

0.
60

6 
0.

09
1 

0.
22

8 
0.

60
0 

0.
28

4 
0.

08
1 

0.
33

4 
0.

06
6 

 

D. Dobos et al.                                                                                                                                                                                                                                   



Computers and Chemical Engineering 175 (2023) 108263

11

generation for testing data is the same as the training data generation. 
According to a system with m streams, we generated the test data of 
(m+1) ∗ 1000 samples in which 1000 samples with no-GE, 1000 sam-
ples with GE on the mth stream. The information details of experimental 
datasets generated from 16 systems are shown in Table A1. 

The performances of all ADMs on the test samples were reported 
according to 4 performance metrics namely Overall power (OP), Selec-
tivity, Accuracy, and F1-Score. OP and Selectivity are two popular 
metrics when evaluating the performance of GED methods while Ac-
curacy and F1-Score are two popular metrics used in the ML community 
to evaluate the performance of ML methods. We illustrate the confusion 
matrix which summarises how successful an ADM is at predicting sam-
ples belonging to GE or non-GE class. Four performance metrics are 
computed based on the confusion matrix by using the Eqs. (1)–(4). Ac-
curacy aims to measure all the correctly identified cases i.e., considering 
both true positive and true negative cases of a GE detector. The OP is 
intuitively the ability of a GE detector to find all the positive samples i.e., 
GE samples. The Selectivity meanwhile is intuitively the ability of a GE 
detector not to label as positive a sample that is negative i.e., non-GE. It 
is recognised that the OP is the Recall while the Selectivity is the Pre-
cision, two popular performance matrices used in the ML community. 
The F1 score takes into consideration both False Negative and False 
Positive in the detection results as the metric is the harmonic mean of the 
Precision (Selectivity) and Recall (OP).   

Predicted GE 
Actual GE  GE = Yes GE = No  

GE = Yes True Positive (TP) False Negative (FN) 
GE = No False Positive (FP) True Negative (TN)  

Accuracy =
Number of samples correctly detected
Number of simulation samples made

=
TP + TN

TP + TN + FP + FN
(1)  

OP = Recall =
Number of gross errors correctly identified

Number of gross errors simulated
=

TP
TP + FN

(2)  

Selectivity = Precision =
Number of gross errors correctly identified

Total number of gross errors detected

=
TP

TP + FP
(3)  

F1 =
2 × Precision × Recall

Precision + Recall
(4) 

We used the Friedman test (Garcia and Herrera, 2008) to test the 
difference between the performances concerning each of these 4 metrics 
of 19 experimental ADMs on 32 test datasets. The Friedman test is used 
to test the null hypothesis that all methods perform equally on the 
datasets. If the null hypothesis is rejected i.e., the p-value of the Fried-
man test is smaller than a specific threshold, a post-hoc test is then 
conducted. In this case, we used Nemenyi post-hoc test for all pairwise 
comparisons based on the rankings of ADMs on all experimental test 
datasets. Two methods are considered to perform differently with a 
statistical significance if the p-value computed from the post-hoc test 
statistic is smaller than an adjusted value of confidence level computed 
from Nemenyi’s procedure. In this work, the confidence level of the 
Nemenyi test was set to 0.05. 

4. Experimental results and discussions 

4.1. Comparison among ADMs 

Tables 3-6 show the accuracy and OP results of the 19 experimental 
ADMs on the 32 test datasets. The F1 Score and Selectivity results of the 
ADMs can be found in the Supplemental Material. The Friedman test 
returns p-values smaller than 2.2E-16 for each performance metric 
which means we reject the null hypothesis of “no difference in the 
performances of all ADMs” (Table 7). The Nemenyi post-hoc test results 
in Figs.2-5 show a similar pattern relating to the accuracy, F1 score, and 
OP in which OCSVM ranks first among 19 methods on these perfor-
mance metrics. 

4.1.1. Comparison based on detection accuracy 
For accuracy, the Nemenyi post-hoc test result indicates that OCSVM 

ranks first among all experimental methods and is better than 15 ADMs 
(PCA, iForest, LMDD, Autoencoder, ABOD, HBOS, LOF, LODA, Deep 
SVDD, ECOD, COF, ROD, COPOD, SOD, SO-GAAL). Elliptic Envelop 
ranks second and is better than 9 ADMs (LOF, LODA, Deep SVDD, ECOD, 
COF, ROD, COPOD, SOD, SO-GAAL). The top 5 ADMs ranked based on 
accuracy are OCSVM, Elliptic Envelope, KNN, VAE, and PCA in which 
the Nemenyi test indicates that there are no differences in the perfor-
mance of OCSVM, Elliptic Envelope, KNN, and VAE. The 5 poorest 
methods based on accuracy are COF, ROD, COPOD, SOD, and SO-GAAL. 

In detail, OCSVM obtains an average accuracy of 0.777 on 5% GE 
datasets, which is higher than the second-best method (Elliptic Enve-
lope) by more than 40%. There are 9 ADMs (iForest, LOF, Elliptic En-
velope, KNN, ABOD, Autoencoder, VAE, PCA, and LMDD) which obtain 
accuracies between 30% and 35%. SO-GAAL and SOD are the two 
poorest methods in this experiment in which their average accuracies 
are only about 14%. It is observed that P16 is the most challenging 
dataset for the experimental methods in which 10 methods obtained the 
poorest results on this dataset compared to those on the other datasets. 
Meanwhile, on the P1 dataset, 8 methods obtained the highest value of 
accuracy among their results on 16 datasets. 

On 10% GE datasets, the accuracies of 13 methods increase at 
different rates while the performances of the others remain the same or 
even poorer than their performances on 5% GE datasets. Autoencoder 
and PCA are two methods with the most significant increase of 0.319 
and 0.316. By contrast, COF, COPOD, and ECOD show a decrease in their 
accuracies (0.190 to 0.164 of COF, 0.179 to 0.164 of COPOD, and 0.188 
to 0.183 of ECOD). Even though the average accuracy of OCSVM in-
creases by only 0.077, this method is still the best ADM on 10% GE 
datasets (0.854 vs. 0.630 of the second-rank method VAE). 

On 5% GE cases, OCSVM ranks first on 15 datasets. This method is 
outperformed by Elliptic Envelope, VAE, and PCA on the P3 datasets, 
obtaining 5% smaller accuracy than the first ranked method (Elliptic 
Envelope). When the magnitude of GEs increases to 10%, the better 
performance of OCSVM is not as clear as in the 5% cases in which 
OCSVM ranks first on 12 datasets. On the P1 and P4 dataset, OCSVM 
ranks fourth while on P3 and P12 datasets, OCSVM ranks fifth among all 
methods. The differences between the accuracy of OCSVM and the top 
performance methods on the P1 and P5 dataset are not significant. On 
the P1 dataset, for example, the accuracy of OCSVM is 0.849, which is 
about 2% smaller than the top 3 methods on this dataset (0.861 of 
Elliptic Envelope, 0.866 of iForest, and 0.87 of KNN). On the P4 dataset, 
OCSVM obtained an accuracy of 0.926 which is slightly smaller than 
that of PCA (0.927), Autoencoder (0.930), and VAE (0.940). Meanwhile, 
on P3 and P12 datasets, although OCSVM performed well, it was out-
performed by some ADMs, for example, 0.845 vs. 0.998 of Autoencoder, 
VAE, and PCA on the P3 dataset. 

4.1.2. Comparison based on overall power 
For OP, the null hypothesis that all methods performed similarly is 

rejected. The Nemenyi post-hoc test result in Fig. 3 shows that OCSVM 

Table 7 
The Friedman test results for 19 methods on 32 datasets.  

Metric Chi-squared df p-value 

Accuracy 331.74 18 < 2.2e-16 
F1 331.41 18 < 2.2e-16 
OP 333.29 18 < 2.2e-16 
Selectivity 344.8 18 < 2.2e-16  
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Fig. 2. Nemenyi test results on Accuracies of 19 ADMs 
OCSVM > PCA, iForest, LMDD, Autoencoder, ABOD, HBOS, LOF, LODA, Deep SVDD, ECOD, COF, ROD, COPOD, SOD, SO-GAAL 
Elliptic Envelope > LOF, LODA, Deep SVDD, ECOD, COF, ROD, COPOD, SOD, SO-GAAL 
KNN > LODA, Deep SVDD, ECOD, COF, ROD, COPOD, SOD, SO-GAAL 
VAE, PCA, iForest, LMDD > Deep SVDD, ECOD, COF, ROD, COPOD, SOD, SO-GAAL 
Autoencoder > ECOD, COF, ROD, COPOD, SOD, SO-GAAL. 

Fig. 3. Nemenyi test results on OPs of 19 ADMs 
OCSVM > VAE, iForest, PCA, LMDD, Autoencoder, ABOD, HBOS, LOF, LODA, Deep SVDD, ECOD, COF, ROD, COPOD, SOD, SO-GAAL 
Elliptic Envelope > LOF, LODA, Deep SVDD, ECOD, COF, ROD, COPOD, SOD, SO-GAAL 
KNN > LODA, Deep SVDD, ECOD, COF, ROD, COPOD, SOD, SO-GAAL 
VAE, PCA, iForest > Deep SVDD, ECOD, COF, ROD, COPOD, SOD, SO-GAAL. 
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obtains better results compared to the VAE, iForest, PCA, LMDD, 
Autoencoder, ABOD, HBOS, LOF, LODA, Deep SVDD, ECOD, COF, ROD, 
COPOD, SOD, and SO-GAAL on the 32 datasets. On 5% GE datasets, 
OCSVM ranks first on 15 datasets and ranks second on the P3 datasets. 
On 10% GE datasets, OCSVM ranks first on 14 datasets and ranks fifth on 
the P3 and P12 dataset. Compared to the results relating to accuracy 
where OCSVM ranks fourth on the P1 and P4 dataset for OP, OCSVM 
ranks first on these datasets. It is noted that OP is the Recall, which is 
intuitively the ability of a GE detector to find all the GE samples. This 
means OCSVM has a powerful ability to detect GE samples in a test 
dataset. 

Once again, the Elliptic Envelope is the second-best method in our 
experiment. Although this method did not perform well on the 5% GE 
datasets like P6, P11, P15, and P16, on the 10% GE datasets, its OP result 
increases significantly on 13 datasets except P4 dataset (an increase 
from 0.880 to 0.910), P6 dataset (an increase from 0.109 to 0.165) and 
P16 dataset (an increase from 0.014 to 0.020). On P1 and P14 dataset, 
for example, the OPs of the Elliptic Envelope increase about 50% when 
GE magnitude increases from 5% to 10%. VAE performed in the same 
manner as Elliptic Envelope in which it did not obtain high perfor-
mances on 5% GE datasets but improved the performances on 10% GE 
datasets. This method unfortunately could not detect any GE samples on 
P16 dataset (its OP is 0.000 which means its true positive is 0.000). 

4.1.3. Comparison based on selectivity 
The performances of all ADMs for Selectivity are shown in Table S1 

and S2 in the Supplemental Material. We again reported the Nemenyi 
post-hoc test results in Fig. 4 for the pairwise comparison. On this per-
formance metric, SOD, Elliptic Envelope, COPOD, VAE, and PCA are the 
top 5 methods. It is observed that 18 ADMs obtain high values of 
selectivity on the 5% GE datasets except for SO-GAAL on some datasets. 
On 10% GE datasets, the results of those 18 methods relating to the 

selectivity are even better than those on 5% GE datasets: many methods 
obtained Selectivity of 99%. 

The Nemenyi test results indicate that SOD, Elliptic Envelope, and 
COPOD are better than iForest, ROD, LOF, LMDD, LODA, HBOS, ECOD, 
OCSVM, Deep SVDD, and SO-GAAL. It is noted that SOD is the second 
poorest method among 19 ADMs on the other performance metrics. The 
high value of the selectivity of SOD is from its small value of false pos-
itive because this method is only able to detect a very small number of 
GE samples and most of these detections are correct. A similar obser-
vation can be found in the case of COPOD. 

In contrast, Elliptic Envelope and VAE are two methods obtaining the 
second and fourth ranks concerning the Selectivity metric. This dem-
onstrates the ability of these methods not to label as positive a sample 
that is negative i.e., non-GE. OCSVM, meanwhile, was slightly out-
performed by some ADMs concerning the Selectivity metric (OCSVM’s 
average Selectivity score was 0.931 for up to 5% GEs compared to the 
best average Selectivity score was 0.978 of COPOD), although this 
method ranks first concerning the other performance metrics. That 
means OCSVM tends to predict non-GE samples to have GEs, resulting in 
slightly high values of the false positive (or slightly low values of the 
Selectivity). 

4.1.4. Comparison based on F1 score 
We compared the ADMs based on the F1 Score (please see the results 

in Table.S3 and Table.S4 in the Supplemental Material). In this case, the 
p-value obtained by using the Friedman test is smaller than 0.05. Hence, 
we rejected the null hypotheses and conducted the post-hoc test for all 
pairwise comparisons among the 19 methods. A similar pattern can be 
observed from the Nemenyi test results on accuracy and Overall Power. 
Based on the Nemenyi test, OCSVM is better than iForest, PCA, LMDD, 
Autoencoder, ABOD, HBOS, LOF, LODA, Deep SVDD, ECOD, COF, ROD, 
COPOD, SOD, SO-GAAL. The second-ranked method Elliptic Envelope 

Fig. 4. Nemenyi test results on selectivity values of 19 ADMs 
SOD, Elliptic Envelope, COPOD > iForest, ROD, LOF, LMDD, LODA, HBOS, ECOD, OCSVM, Deep SVDD, SO-GAAL 
VAE > LOF, LMDD, LODA, HBOS, ECOD, OCSVM, Deep SVDD, SO-GAAL 
PCA, Autoencoder, COF > LMDD, LODA, HBOS, ECOD, OCSVM, Deep SVDD, SO-GAAL 
KNN, ABOD > ECOD, OCSVM, Deep SVDD, SO-GAAL 
iForest, ROD, LOF > OCSVM, Deep SVDD, SO-GAAL. 
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meanwhile is better than LOF, LODA, Deep SVDD, ECOD, COF, ROD, 
COPOD, SOD, and SO-GAAL. Once again, OCSVM ranks first among 19 
methods, followed by Elliptic Envelope and KNN. The top 5 poorest 
methods are COF, ROD, COPOD, SOD, and SO-GAAL. 

On 5% GE datasets, OCSVM ranks first on up to 15 datasets for F1 
score. This method performed poorly on the P3 dataset only, ranking 
fourth on this dataset and obtaining a 3% smaller value for the F1 score 
than the first-rank method. On 10% GE datasets, OCSVM ranked first on 
13 datasets, ranked second on P4 dataset, and ranked fifth on P3 and P12 
datasets. It is noted that OCSVM ranks fourth on P1 and P4 dataset with 
10% GE for accuracy. The high values of F1 score of OCSVM indicate 
that this method obtained a good balance between the Selectivity 
(Precision) and OP (Recall) since F1 Score is the harmonic mean of those 
metrics. 

To sum up, the experimental results and the statistical test results 
indicate that:  

- OCSVM is the best ADM in the experiment concerning accuracy, F1 
score, and OP. This method has a strong ability to detect GE samples 
(high values of OP or Recall) and achieves a balance between Pre-
cision (Selectivity) and Recall (OP) (high values of F1 score). OCSVM 
obtained slightly smaller values of selectivity compared to the other 
methods. This indicates that OCSVM tends to assign the positive label 
to non-GE samples slightly more than other methods. 

- Elliptic Envelope is the second-best ADM for the GED in our exper-
iment, maintaining the second rank for four performance metrics. 
Although this method did not perform well on 5% GE datasets, its 
performance improved significantly on 10% GE datasets. Elliptic 
Envelop underperformed compared to OCSVM in general but is much 
better than that competitor on the selectivity metrics. In practice, the 
Elliptic Envelope can be considered in datasets with large values of 
the magnitude of GEs.  

- Other ADMs like KNN, PCA, iForest, and VAE performed in the same 
manner as Elliptic Envelope, performing poorly on 5% GE datasets 
but performing well on 10% GE datasets. These methods maintained 
the middle ranks concerning 4 performance metrics.  

- SO-GAAL, SOD, COPOD, ROD, COF, ECOD, Deep SVDD, and LODA 
are the poorest methods to detect GE in our experiments. Although 
SOD obtained the best results relating to selectivity, this method can 
correctly detect a very small number of GE samples. 

We put some explanations about the performance differences among 
experimental methods. It is noted that the 16 systems we used in the 
experiments contain linear relationships between streams (do Valle 
et al., 2018). As a result, the methods like OCSVM or Elliptic Envelope 
which provide decision boundaries between normal and abnormal in-
stances with consideration to the linear relations on data attributes can 
obtain high performance on the experimental datasets. Besides, KNN 
and PCA obtained good results on 10% GE datasets but performed 
poorly on 5% GE datasets. This could be due to their sensitivity to 
certain parameters such as the proportion of outliers in the dataset. 
Previous research (Haakon et al., 2007) showed that PCA is highly 
sensitive to its parameters. Additionally, since PCA transforms data to a 
different space, anomalous instances may exhibit either better or worse 
discriminative characteristics when distinguished from normal in-
stances. Therefore, while PCA may perform well on some datasets, it 
may perform poorly on others. 

Poor-performing methods such as ECOD and COPOD were shown to 
be ineffective in detecting dependency anomalies in previous research 
(Songqiao et al., 2022) (ECOD and COPOD ranked 1st and 3rd as the 
poorest methods in their experiments to detect dependency anomalies). 
In our datasets, instances were generated according to process con-
straints (such as equations of mass or energy balance) between streams, 
resulting in dependent relationships between stream variances. This 

Fig. 5. Nemenyi test results on F1 scores of 19 ADMs 
OCSVM > iForest, PCA, LMDD, Autoencoder, ABOD, HBOS, LOF, LODA, Deep SVDD, ECOD, COF, ROD, COPOD, SOD, SO-GAAL 
Elliptic Envelope > LOF, LODA, Deep SVDD, ECOD, COF, ROD, COPOD, SOD, SO-GAAL 
KNN > LODA, Deep SVDD, ECOD, COF, ROD, COPOD, SOD, SO-GAAL 
VAE, PCA, iForest > Deep SVDD, ECOD, COF, ROD, COPOD, SOD, SO-GAAL 
LMDD > ECOD, COF, ROD, COPOD, SOD, SO-GAAL. 
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explains why ECOD and COPOD performed poorly on the experimental 
datasets. 

4.2. The impacts of data preparation 

We investigate the impacts of data preparation on the performance of 
ADMs on the experimental datasets. The training data was transformed 
by using PCA or RP before feeding into an ADM. Fig. 6 shows the 

Accuracy of 4 selected ADMs on the experimental systems with a 
different number of retained components or dimensions. The red dashed 
lines in these figures show the accuracy of an ADM on the original P4 
dataset with 10% of GE. We denoted “Method Name+PCA”, “Method 
Name+Normal”, “Method Name+Bernoulli”, and “Method Name-
+Achlioptas” as the names of an ADM training on dataset transformed 
by using a data transformation method. The figures of the other methods 
as well as the figures relating to OP, F1-Score, and Selectivity outputs 

Fig. 6. The accuracies of 4 selected ADMs on the P4 dataset (10% GE) with different data transformation methods.  
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can be found in Fig S1-S4 in the Supplemental Material. 
It is observed that using either PCA or Random Projection does not 

boost the performance of OCSVM. When 1,2,3, and 4 components (di-
mensions) were chosen, the accuracies of OCSVM on those transformed 
datasets are smaller than the accuracy of OCSVM on the original dataset. 
When the number of retained components (dimensions) were 5 and 6, 
the accuracies associated with PCA, normal RP, Bernoulli RP, and 
Achlioptas RP are equal to the original accuracy. 

By contrast, using data transformation can improve the performance 
of LMDD, COPOD, and HBOS to varying degrees. Concerning COPOD, 
the COPOD + PCA case attains 25.3%, 29.2%, 25.5%, 26.3%, 23.8%, 
and 22% with 1, 2, 3, 4, 5, and 6 retained components respectively 
which are 2%− 9% higher than the original result of COPOD. When 
using RP, COPOD can improve its performance in all cases except 
COPOD + Achlioptas with 1 dimension. The most improved case is by 

using Normal RP in which the accuracy of COPOD increases by up to 
13.8%. 

Significant improvements can be observed in the cases associated 
with HBOS. By using Bernoulli RP, the accuracy of HBOS can improve by 
up to more than 30% with 2, 3, 4, 5, and 6 dimensions. Normal RP also 
can boost the performance of HBOS + Normal with smaller increases 
from 10% to 30%. HBOS + Achlioptas meanwhile does not show any 
improvement when 1, 3, 4, and 5 dimensions were used. Finally, the 
results associated with LMDD method show a different pattern 
compared to those of OCSVM, COPOD, and HBOS. While using 1 
component or dimension helped to significantly increase the accuracy of 
LMDD (more than 50% increase), the results are even poorer than the 
original one when more than 1 component or dimension was used. 

To sum up, the experiments demonstrate that using a data trans-
formation method like PCA or RP can improve the performance of an 

Fig. 7. The performance of 6 selected ADMs on P1 datasets.  

Fig. 8. The performance of 6 selected ADMs on P2 datasets.  
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ADM with different significances. For the best-performing methods data 
transformation/dimensional reduction does not significantly improve 
GED performance. For the poorest performing methods, it does help, 
however not significantly to challenge the best-performing methods. In 
practice, a data transformation method can be used on the measurement 
data before it is fed into an ADM. To determine which data trans-
formation methods will be used for a particular dataset and ADM, we 
can evaluate them on a validation set and compare their performances. 
It is widely recognized that if a method performs well on the validation 
set, it can likely obtain high performance on the test data. 

4.3. The impacts of size of training data 

We investigated impacts of the size of training dataset on the per-
formance of ADMs for the GED. Figs. 7-10 show the performances of the 

top 6 ADMs namely OCSVM, KNN, VAE, PCA, Elliptic Envelope, and 
iForest on 4 systems with two different training sizes: training dataset 1 
(1000 non-GEs and m*10 observations where GEs are present on each 
stream) and training dataset 2 (10,000 non-GEs observations and m*100 
observations where GEs are present on each stream). Dataset 2 is 10 
times larger than dataset 1 however the ratio of GEs to non-GEs has been 
maintained. 

It can be seen that using different numbers of training samples may 
impact the performance of some methods. On P1 and P2 system, the 
performance of VAE and OCSVM improve slightly when more training 
samples are available. In detail, on P1 system, the OP of VAE is 34.1% 
(5%) and 84.5% (10%) on the training dataset 2 which is better than the 
OP of VAE on the training dataset 1 by 1.5% (5%) and 3.5% (10%). On 
P2 dataset, the OP of OCSVM slightly increases from 82.98% (5%) and 
96.57% (10%) (on the training dataset 1) to 83.8% (5%) and 97.11% 

Fig. 9. The performance of 6 selected ADMs on P3 datasets.  

Fig. 10. The performance of 6 selected ADMs on P4 datasets.  
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(10%) (on the training dataset 2). A similar pattern can be found in the 
performance of VAE and OCSVM relating to accuracy and F1 score. On 
P4 system, the performance of 5 methods (VAE, KNN, PCA, OCSVM, and 
Elliptic Envelope) improve with more training samples except for iForest 
on the P4 10% GE dataset. 

By contrast, on P1 and P2 system, Elliptic Envelope, KNN, PCA, and 
iForest performed slightly poorer on training dataset 2 than on training 

set 1. For example, the F1 score of Elliptic Envelope is 50.69% (5%) and 
90.14% (10%) on the training dataset 1 and 50.1% (5%) and 89.9% 
(10%) on the training dataset 2 of P1 system, respectively. The F1 score 
of iForest decreased from 52.22% (5%) and 90.56% (10%) to 50.5% 
(5%) and 89.6% (10%) when more training samples were used. On P3 
system with 5% GE, the reductions in the performance Elliptic Envelope, 
KNN, PCA, and iForest are more significant than those on the P1 and P2 

Table. 10 
The F1 Score of the top 6 ADMs and 5 statistical tests on the 16 datasets with ±5% of GEs.   

iForest OCSVM Elliptic envelope KNN VAE PCA GT MT NT GLR IQR 

P1 0.522 0.780 0.507 0.520 0.481 0.460 0.237 0.237 0.237 0.237 0.066 
P2 0.509 0.870 0.672 0.661 0.617 0.591 0.414 0.622 0.498 0.622 0.495 
P3 0.546 0.854 0.881 0.649 0.867 0.864 0.503 0.656 0.591 0.656 0.945 
P4 0.563 0.903 0.742 0.734 0.707 0.659 0.686 0.828 0.782 0.828 0.658 
P5 0.368 0.832 0.454 0.465 0.410 0.433 0.847 0.898 0.879 0.898 0.383 
P6 0.204 0.649 0.195 0.195 0.190 0.189 0.192 0.451 0.332 0.451 0.069 
P7 0.299 0.800 0.459 0.489 0.387 0.401 0.349 0.690 0.596 0.690 0.422 
P8 0.331 0.957 0.309 0.287 0.304 0.267 0.185 0.487 0.414 0.487 0.257 
P9 0.265 0.960 0.328 0.199 0.282 0.267 0.291 0.641 0.563 0.641 0.350 
P10 0.323 0.804 0.463 0.456 0.289 0.260 0.552 0.838 0.775 0.838 0.711 
P11 0.241 0.960 0.212 0.272 0.212 0.218 0.213 0.657 0.567 0.657 0.314 
P12 0.342 0.875 0.754 0.696 0.718 0.729 0.676 0.854 0.818 0.854 0.837 
P13 0.238 0.723 0.214 0.234 0.199 0.210 0.095 0.592 0.442 0.592 0.194 
P14 0.465 0.973 0.368 0.416 0.091 0.086 0.522 0.896 0.845 0.896 0.872 
P15 0.367 0.814 0.095 0.240 0.073 0.071 0.195 0.795 0.665 0.795 0.489 
P16 0.512 0.990 0.027 0.111 0.000 0.000 0.717 0.971 0.945 0.971 0.990 
Ave 0.381 0.859 0.418 0.414 0.364 0.357 0.417 0.694 0.622 0.694 0.503  

Table. 11 
The F1 Score of the top 6 ADMs and 5 statistical tests on the 16 datasets with ±10% of GEs.   

iForest OCSVM Elliptic envelope KNN VAE PCA GT MT NT GLR IQR 

P1 0.906 0.906 0.901 0.906 0.877 0.870 0.573 0.573 0.573 0.573 0.598 
P2 0.880 0.944 0.929 0.924 0.936 0.937 0.758 0.829 0.784 0.829 0.893 
P3 0.784 0.912 0.998 0.862 0.999 0.999 0.694 0.778 0.739 0.778 0.998 
P4 0.930 0.958 0.949 0.943 0.964 0.956 0.922 0.955 0.953 0.955 0.936 
P5 0.738 0.937 0.829 0.789 0.842 0.847 0.913 0.932 0.923 0.932 0.824 
P6 0.260 0.705 0.280 0.262 0.283 0.263 0.194 0.491 0.370 0.491 0.113 
P7 0.470 0.856 0.693 0.693 0.689 0.686 0.619 0.809 0.751 0.809 0.681 
P8 0.653 0.957 0.756 0.571 0.746 0.716 0.460 0.703 0.638 0.703 0.789 
P9 0.461 0.960 0.646 0.476 0.652 0.637 0.549 0.768 0.721 0.768 0.673 
P10 0.588 0.928 0.856 0.799 0.870 0.861 0.822 0.946 0.931 0.946 0.932 
P11 0.488 0.960 0.686 0.482 0.678 0.691 0.551 0.860 0.804 0.860 0.825 
P12 0.588 0.934 0.955 0.856 0.977 0.976 0.857 0.932 0.920 0.932 0.977 
P13 0.367 0.786 0.384 0.386 0.375 0.381 0.176 0.708 0.550 0.708 0.421 
P14 0.633 0.975 0.858 0.765 0.856 0.853 0.835 0.955 0.918 0.955 0.961 
P15 0.516 0.895 0.512 0.557 0.490 0.486 0.470 0.883 0.799 0.883 0.930 
P16 0.682 0.990 0.039 0.418 0.000 0.000 0.894 0.977 0.964 0.977 0.995 
Ave 0.622 0.913 0.704 0.668 0.702 0.697 0.643 0.819 0.771 0.819 0.784  

Table. 12 
The Selectivity of the top 6 ADMs and 5 statistical tests on the 16 datasets with ±5% of GEs.   

iForest OCSVM Elliptic envelope KNN VAE PCA GT MT NT GLR IQR 

P1 0.919 0.826 0.926 0.916 0.917 0.913 0.901 0.901 0.901 0.901 0.972 
P2 0.972 0.915 0.982 0.977 0.981 0.979 0.980 0.958 0.960 0.958 0.997 
P3 0.990 0.954 0.997 0.989 0.998 0.998 0.990 0.971 0.976 0.971 0.997 
P4 0.983 0.927 0.989 0.989 0.989 0.987 0.984 0.949 0.959 0.949 0.997 
P5 0.972 0.925 0.981 0.978 0.979 0.977 0.913 0.897 0.901 0.897 0.991 
P6 0.892 0.882 0.894 0.896 0.885 0.889 0.883 0.879 0.878 0.879 0.894 
P7 0.949 0.936 0.974 0.978 0.967 0.969 0.971 0.942 0.946 0.942 0.988 
P8 0.962 0.917 0.967 0.960 0.968 0.968 0.954 0.942 0.944 0.942 0.978 
P9 0.966 0.923 0.983 0.950 0.979 0.978 0.951 0.940 0.939 0.940 0.982 
P10 0.985 0.951 0.998 0.992 0.995 0.995 0.980 0.955 0.956 0.955 0.991 
P11 0.967 0.923 0.974 0.956 0.978 0.977 0.965 0.943 0.947 0.943 0.976 
P12 0.984 0.954 0.998 0.995 0.996 0.996 0.992 0.965 0.972 0.965 0.995 
P13 0.957 0.945 0.958 0.956 0.959 0.957 0.956 0.948 0.947 0.948 0.959 
P14 0.987 0.962 1.000 0.995 1.000 1.000 0.996 0.975 0.975 0.975 0.994 
P15 0.981 0.971 0.990 0.985 0.993 0.991 0.983 0.970 0.972 0.970 0.985 
P16 0.993 0.980 1.000 1.000 0.000 0.000 0.998 0.983 0.986 0.983 0.995 
Ave 0.966 0.931 0.976 0.970 0.912 0.911 0.962 0.945 0.947 0.945 0.981  
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system. VAE for example obtained 76.72% of OP on the training dataset 
1 while this method only obtained 57.5% of OP on the training dataset 2. 

To sum up, the size of training datasets may affect the performances 
of ADMs on experimental systems with different significances. Some 
methods obtained better results while some methods performed poorer 
when more training samples were used. When applying an ADM on a 
training dataset, the method tries to distinguish between GE and non-GE 
samples to form a detection-making strategy on test samples. Using more 
training samples may change the discriminative ability of the training 
data that affect the performance of the detection-making strategy of 
ADMs. 

4.4. The training and testing time 

Table 8 shows the training time of 19 ADMs on the 16 datasets with 
±5% of GEs. The experiments were conducted on a PC with a Core i7 
processor and 128GB RAM. For iForest, LOF, OCSVM, Elliptic Envelope, 
KNN, ECOD, COPOD, ABOD, LODA, Autoencoder, VAE, Deep SVDD, 
PCA, COF, HBOS, in most cases their training times never exceed five 
minutes, except for OCSVM and COF on the P16 dataset, which took 896 
and 1230 s (or 15 and 20 min) for training respectively. 

Meanwhile, ROD, SO-GAAL, LMDD, and SOD took much higher 
training time than the others, requiring a training time of 357.037, 

236.701, 2204.309, and 216.284 s on average, respectively. The training 
time of ROD is the smallest among these 4 methods on the P1-P15 
datasets. In detail, for the P1 dataset, ROD took around 2 s for 
training while SO-GAAL, LMDD, and SOD required 65.76, 14.338, and 
15.822 s respectively. From P2 to P15, SO-GAAL required at most 
464.937 s (on P15) which is lower than the required training time of 
ROD on P15 by more than 200 s, while SOD had the highest training 
time at around 360 s on the P14 dataset. For the P16 dataset, SO-GAAL 
took just around 10 min for training, while ROD and SOD required 
4176.322 and 1629.394 s, which is higher by 6.15 and 3.39 times 
compared to the time for training on the P15 dataset. Finally, the sets of 
training time of LMDD on the P1-P13 dataset were from 14 s to almost 
13 min, but on P14, P15, and P16 dataset the required times for training 
were more than 25,000 s or almost 7 h, which is the highest among all 
methods on all datasets. 

Table 9 shows the testing time for the 19 ADMs on the 16 datasets. 
The methods which did not require more than 5 min for training also had 
small testing time. Even though SO-GAAL required from 1 to 7.73 min 
for training, it only required less than 1 s for testing on all datasets. For 
the ROD method, on P1 to P15, the required testing time was from more 
than 0.5 s to around 2 min. However, on the P16 dataset, the testing time 
of this method was up to 17 min. The testing time required for LMDD 
and SOD were comparable to the training time, especially for LMDD on 

Table. 13 
The Selectivity of the top 6 ADMs and 5 statistical tests on the 16 datasets with ±10% of GEs.   

iForest OCSVM Elliptic envelope KNN VAE PCA GT MT NT GLR IQR 

P1 0.960 0.852 0.961 0.960 0.956 0.956 0.966 0.966 0.966 0.966 0.998 
P2 0.987 0.924 0.987 0.987 0.989 0.989 0.990 0.972 0.977 0.972 0.999 
P3 0.993 0.958 0.997 0.993 0.998 0.998 0.992 0.979 0.984 0.979 0.997 
P4 0.991 0.930 0.992 0.993 0.995 0.994 0.991 0.962 0.971 0.962 1.0 
P5 0.987 0.939 0.991 0.989 0.991 0.992 0.925 0.907 0.912 0.907 0.997 
P6 0.914 0.892 0.926 0.917 0.921 0.921 0.908 0.891 0.898 0.891 0.940 
P7 0.974 0.941 0.987 0.986 0.988 0.989 0.988 0.951 0.960 0.951 0.993 
P8 0.982 0.917 0.990 0.984 0.990 0.990 0.983 0.965 0.969 0.965 0.995 
P9 0.976 0.923 0.989 0.978 0.988 0.989 0.972 0.952 0.953 0.952 0.992 
P10 0.991 0.963 0.999 0.996 0.999 0.999 0.987 0.961 0.966 0.961 0.994 
P11 0.986 0.923 0.994 0.981 0.995 0.995 0.992 0.963 0.968 0.963 0.995 
P12 0.991 0.959 0.998 0.996 0.998 0.997 0.994 0.968 0.976 0.968 0.995 
P13 0.973 0.953 0.980 0.976 0.982 0.981 0.980 0.956 0.959 0.956 0.985 
P14 0.992 0.963 1.000 0.998 1.000 1.000 0.998 0.978 0.979 0.978 0.995 
P15 0.987 0.975 0.998 0.995 0.999 0.999 0.995 0.975 0.979 0.975 0.995 
P16 0.995 0.980 1.000 1.000 0.000 0.000 0.999 0.984 0.986 0.984 0.994 
Ave 0.980 0.937 0.987 0.983 0.924 0.924 0.979 0.958 0.963 0.958 0.9915  

Fig.11. Nemenyi test results on Accuracy when comparing 6 ADMs to 5 statistical tests 
OCSVM > NT, IQR, Elliptic Envelope, VAE, KNN, PCA, iForest, GT 
MT, GLR> VAE, KNN, PCA, iForest, GT 
NT > iForest, GT. 
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the P16 dataset which required roughly 7 h. 
The reported training and testing time of ADMs on the 16 datasets 

demonstrate that these methods are practical when used to detect GEs. 

4.5. Comparison with conventional methods 

We chose the top 6 ADMs in the above experiments to compare with 
several conventional GED methods. Five statistical tests namely GT, MT, 
NT, IQR, and GLR were selected as the baselines. The statistics of MT GT, 
NT, and GLR were calculated based on uncertainties of streams provided 
in the original studies (see Fig S5-S20). The significant level of these 
tests was set to 0.05. We did not compare with other serial elimination, 
serial compensation, and collective compensation methods because 
those methods aim to investigate the location of GEs on the measure-
ment data while ADMs output the binary results indicating whether GE 
presents on the measurement data or not. We did not compare with 
other supervised ML methods such as the ensemble methods in Nguyen 
et al. (2020), Dobos et al. (2021) or probabilistic-based methods such as 

Bayesian Network in Yuan et al. (2015) because those methods require 
ground truth information of GE for the training data which is not 
necessary to train unsupervised ADMs. Tables 10-13 show the F1 Score 
and Selectivity of the top 6 ADMs and 5 statistical tests on the experi-
mental datasets. The Accuracy and OP of these methods can be found in 
Table.S.5-Table.S.8 in the Supplemental Material. 

The Friedman test shows that there are differences in the perfor-
mances of the top 6 ADMs and the 5 statistical tests on all four perfor-
mance metrics. Figs. 11-14 show the Nemenyi post-hoc test when 
comparing each pairwise of experimental methods. It can be seen that 
OCSVM ranks first, followed by MT, GLR, NT, IQR, and Elliptic Envelop 
while PCA, iForest, and GT are the 3 poorest methods on Accuracy, F1 
score, and OP. 

For F1 Score, Accuracy, and OP, OCSVM is better than NT, IQR, 
Elliptic Envelope, VAE, KNN, PCA, iForest, and GT. MT and GLR perform 
exactly similar and are better than VAE, KNN, PCA, iForest, and GT. 
While NT is better than iForest and GT and there are no statistical dif-
ferences in the performances of MT, GLR, NT, IQR, and Elliptic Envelop. 

Fig. 12. Nemenyi test results on OP when comparing 6 ADMs to 5 statistical tests 
OCSVM > NT, IQR, Elliptic Envelope, VAE, KNN, PCA, iForest, GT 
MT, GLR> VAE, KNN, PCA, iForest, GT 
NT > iForest, GT. 

Fig. 13. Nemenyi test results on Selectivity when comparing 6 ADMs to 5 statistical tests 
IQR, Elliptic Envelope > GT, iForest, NT, MT, GLR, OCSVM 
VAE, KNN, PCA > NT, MT, GLR, OCSVM 
GT, iForest > MT, GLR, OCSVM. 
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On average, OCSVM obtained 85.9% and 91.3% for F1 Score on 5% and 
10% GE dataset respectively. Those values are about 15% and 10% 
better than the average values of the second-best methods (MT and 
GLR). On 5% GE datasets, OCSVM performed poorer than MT and GLR 
on P5 and P10 system only. By contrast, iForest, GT, KNN, and PCA 
obtained 38.1%, 41.7%, 41.4%, and 35.7% of F1 Score on average. 
Although the performances of those methods improved on 10% GE 
datasets, they are still the poorest among all 10 experimental methods. 

For Selectivity, IQR and Elliptic Envelope are better than GT, iForest, 
NT, MT, GLR, and OCSVM based on the Nemenyi test. Meanwhile, VAE, 
KNN, and PCA are better than NT, MT, GLR, and OCSVM; GT and iForest 
are better than MT, GLR, and OCSVM. OCSVM predicted the presence of 
GE on non-GE samples a little more than some methods, resulting in its 
slightly low value of Selectivity (Precision). The difference between the 
Selectivity of OCSVM compared to those of the best ADMs (IQR) is about 
5% only. IQR is the confident method in which its Selectivity is 98.1% 
and 99.15% on average on 5% and 10% GE datasets. Elliptic Envelop 
performed well when considering the Selectivity as this method ob-
tained 97.6% and 98.7% on average on 5% and 10% GE datasets. The 
NT, MT, and GLR performed poorer than all ADMs except OCSVM. That 
means those statistical tests have a strong tendency to label as positive (i. 
e., has GE) a sample that is negative (i.e., has no GE). 

To conclude, OCSVM, MT, and GLR are the top three methods in the 

experiments concerning OP, F1 Score, and Accuracy. However, these 
methods label a sample as positive a little more than the other methods 
like IQR and Elliptic Envelop, resulting in slightly lower values of 
Selectivity (Precision). 

The ADMs can be effectively used to detect GEs on the measurement 
data since two ADMs namely OCSVM and Elliptic Envelop outperform 
the others as well as the statistical tests. It is noted that ADMs can be 
used if historical measurement data is available, making ADMs more 
practical than supervised ML methods for the GED task (Reddy and 
Mavrovouniotis, 1998) (Nguyen et al., 2020) since labelling the training 
samples to train supervised ML (i.e., associating each measurement data 
with GE information) requires huge cost and effort. It should also be 
noted that the statistical tests require uncertainty estimation of each 
stream in the system based on experts’ input and are therefore disad-
vantageous compared to ADMs. 

Although OCSVM outperforms the others on F1 Score, Accuracy, and 
OP, this method outputted a higher value of false positive than the 
others, which makes this method less reliable because of labelling non- 
GE samples as GE samples. This also happened with MT and GLR’s 
outputs. 

5. Conclusions 

In this paper, we have introduced an application of ADMs to detect 
GEs on measurement data when historical data is available. We first 
reviewed the developments of GE techniques including statistical tests, 
serial elimination, serial compensation, collective compensation 
methods, and several ML-based methods. We also conducted an inten-
sive review of ML-based and DL-based ADMs. The experimental frame-
work was introduced with several steps: data preparation, training data 
generation, training a GED model, and detecting on testing data. 

The experiments were conducted with 19 selected ADMs on syn-
thetic datasets generated from 16 systems in the literature. We gener-
ated 16 training datasets and 32 testing datasets with 5% and 10% of GE 
on each stream in each system. We used 4 performance metrics namely 
Accuracy, Overall Power (OP), Selectivity, and F1 Score to report the 
performance of the 19 ADMs on the testing datasets. 

The experimental results indicate that:  

• The top 6 ADMs including OCSVM, Elliptic Envelop, KNN, PCA, VAE, 
and iForest were obtained from the experimental results and Nem-
enyi test results. OCSVM outperformed the other ADMs based on OP, 
Accuracy, and F1 Score. OCSVM achieved slightly lower Selectivity 

Fig. 14. Nemenyi test results on F1 Score when comparing 6 ADMs to 5 statistical tests 
OCSVM > NT, IQR, Elliptic Envelope, VAE, KNN, PCA, iForest, GT 
MT, GLR> VAE, KNN, PCA, iForest, GT 
NT > iForest, GT. 

Table A1 
Information of experimental datasets (with ±5% of GEs or ±10% of GEs) 
generated from 16 systems.   

# of training instances # of testing instances # of dimensions 

P1 4000 4000 3 
P2 7000 7000 6 
P3 13,000 13,000 12 
P4 7000 7000 6 
P5 9000 9000 8 
P6 8000 8000 7 
P7 11,000 11,000 10 
P8 12,000 12,000 11 
P9 13,000 13,000 12 
P10 14,000 14,000 13 
P11 13,000 13,000 12 
P12 13,000 13,000 12 
P13 17,000 17,000 16 
P14 25,000 25,000 24 
P15 29,000 29,000 28 
P16 51,000 51,000 50  
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than several ADMs however this was not sufficient to undermine its 
overall performance. 

• We observed the sensitivity of KNN and PCA based on their perfor-
mances in the experiments. Their performance should be evaluated 
on a validation set before deciding whether they are selected for 
applications. Besides, methods like ECOD and COPOD performed 
poorly because they are ineffective in detecting dependency anom-
alies. These methods thus should not be used to detect the GEs for 
systems including dependent relationships between stream 
variances. 

• The ADMs can potentially be applied to detect GEs on the mea-
surement data when historical data is available. Based on the 
experimental results, OCSVM should be the first choice for GED ap-
plications, especially for linear systems.  

• We compared the top 6 ADMs to the 5 statistical tests namely IQR, 
NT, MT, GLR, and GT. Experimental results showed that OCSVM, 
MT, and GLR are the top 3 methods based on OP, Accuracy, and F1 
Score. Like OCSVM, MT, and GLR obtained slightly high values of 
false positive that make their detection results slightly less reliable. 
The statistical tests need the information of balance equations and 
information uncertainty in the calculation, which is usually based on 

a subjective opinion from experts and is therefore not applicable to 
automated AD. However, when the historical data is not available to 
train ADMs, MT or GLR should be the first choice for applications.  

• Applying data transformation to the measurement data before 
training with an ADM can increase the performance of some ADM, 
especially the worst-performance ones. In this study, we applied two 
data transformation and dimension reduction methods namely PCA 
and Random Projection to the measurement data. Experimental re-
sults showed that the performances of some ADMs improved with 
different significances. In practice, the data transformation method 
and its hyper-parameters can be determined by evaluating the per-
formance of ADM on a validation set.  

• The size of the training data affects the performance of the ADMs to 
varying degrees. In some methods like OCSVM or VAE, using more 
training samples to train an ADM could improve its performance. On 
the other hand, the performances of some methods like iForest or 
PCA are downgraded when more training samples were used. 

Some future work can be considered (i) searching for the optimal 
hyper-parameters of an ADM on a particular dataset to further improve 
its performance (ii) exploring approaches to reduce the high false pos-
itive of some ADMs to make their detection results more reliable (iii) 
developing ADMs-based ensemble to obtain better results than using a 
single ADM. 
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