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1 INTRODUCTION 

The flow measurement of Carbon Dioxide (CO2) rich streams, such has high CO2 

concentration natural gas and CO2 mixes and Carbon Capture and Storage (CCS) 

processes, presents a number of potential challenges. One of these challenges 

concerns the physical properties of CO2. For example, its compressibility exhibits 

significant non-ideal behaviour, notably at pressures and temperatures likely to be 

encountered in CCS processes. Additionally, through a process called ‘molecular 

thermal relaxation’ the molecular structure of CO2 has the ability to attenuate 

ultrasonic meter acoustic signals.  Furthermore, CO2 can undergo phase changes 

through the CCS processes ranging from single phase gas, liquid, dense phase to 

two-phase.  

Though the properties of CO2 can be reliably predicted by several equations of 

state, the common presence of impurities, (N2, H2, CH4, etc) can have a significant 

impact on these properties and therefore compromise uncertainty in the field. 

In 2020, Kocbach et al [1] provided a review of the main available options for CO2 

measurement for CCS. They considered four meter types: Coriolis, ultrasonic, 

Venturi and turbine meters. This paper proposes a fifth alternative that has been 

in development over the past year: a new and improved methodology for operating 

and calculating flow through an orifice meter. 

The authors have presented two previous papers, at the 2019 and 2020 NSFMWs, 

in which advantage is taken of the orifice meter’s three differential pressure 

readings from the diagnostic system ‘Prognosis’: primary (ΔPt), recovered (ΔPr), 

and permanent pressure loss (ΔPPPL) to reduce the uncertainty in the measured 

flow rate through an orifice meter.  In these papers each of the differential pressure 

measurements was used independently to calculate flow rate, and each had its own 

flow coefficient, denoted Cd, Kr, and Kppl, respectively. The 2019 paper introduced 

techniques from data reconciliation to reduce uncertainty. This was extended in 

2020 to take advantage of temporal redundancy in the data using a Kalman filter 

to further reduce uncertainty. These techniques were collectively described under 

the term: ‘Maximum Likelihood Uncertainty’ (MLU). 

A radically different approach is now presented. All three DPs are used to develop 

a new equation to calculate flow rate from first principles. It utilises momentum 

balances in the upstream and downstream sections of the orifice meter and a 

Bernoulli energy equation in the upstream section. 

This new flow equation is significantly different in form to the ISO 5167-2 [2] flow 

equation. The ISO 5617-2 discharge coefficient compensates for the use of the 

known orifice meter beta rather than the theoretically required but unknown ratio 

of vena contracta to meter diameter. However, this new equation introduces a 

velocity head loss coefficient to account for mechanical losses while explicitly 

calculating the vena contracta diameter.  

With no alteration to the primary orifice meter system the ISO 5167-2 flowrate 

calculation is still unaffected and available.  This new equation is not presented as 
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an alternative to the traditional method but a supplemental aid to further improve 

the orifice meter’s performance. 

Incorporating the new and traditional equations into the mass balance constraints 

in the MLU calculations can significantly reduce the system’s overall flowrate 

prediction uncertainty, while increasing the metering system’s flow turn-down.   

The equations and method have been developed for both incompressible and 

compressible flow. The compressible equations have the added benefit that the 

expansibility factor can be calculated in two ways: first according to ISO 5167:2 

and second, assuming a reversible expansion from a calculated upstream pressure 

and vena contracta. This redundancy also allows the value and uncertainty of the 

isentropic coefficient of the gas to be improved in-situ, in accordance with the data. 

The efficacy of the method has been tested and demonstrated using real data 

obtained from the calibration of orifice meters with three pressure taps. 

This new approach is presented as a development of, and complementary to, the 

well-established standard single DP flow equation, but one that also incorporates 

and exploits the additional information that three DP measurements generate.  The 

above developments render the new approach, termed Oculus, appropriate for any 

flow measurement application, inclusive of CO2. 

The application of the MLU and Kalman Filter equations, and algorithms, that 

comprise the Oculus method, combine the multiple instrumentation readings, 

equipment settings, associated uncertainties, and governing physical laws, to 

reconcile measurements such that the whole makes physical sense.  The technique 

can improve best estimates of not just measured system variables but even 

unmeasured variables.  This includes values of the physical properties of the fluid.  

This feature is exploited to improve the estimate of the isentropic exponent in the 

examples presented in this paper. It is anticipated that this can also be extended 

to the density and Joule Thomson coefficient. Hence, this makes the Oculus orifice 

flow meter a good candidate to measure the flow of gases whose physical properties 

are difficult to determine or are sensitive to flowing conditions such as CO2. 

 

2 A NEW ORIFICE FLOW RATE EQUATION - INCOMPRESSIBLE 

 

2.1 Traditional Orifice Flow Rate Equation 

The flow of a fluid through an orifice plate installed in a pipe is illustrated 

schematically in Figure 1: 

 

Figure 1 - Schematic of Orifice Plate Flow Measurement  



 

3 

The flow is derived from the differential pressure measurement across the plate 

∆Pt, a knowledge of the orifice (do) and pipe (dp) diameters, the fluid density (ρ) 

and a discharge coefficient (Cd) that can be determined from a correlation such as 

that presented in in ISO 5167-2 [2]. The equation for incompressible mass flow is: 

𝑄𝑚 =
𝐶𝑑𝜋𝑑𝑜

2√2𝜌𝛥𝑃𝑡

4√(1 − 𝛽4)
 (1) 

Where: 

Qm Mass flow rate (kg/s) 

β Ratio of orifice to pipe diameter (do/dp) 

Equation (1) is derived from Bernoulli’s equation and the conservation of mass. It 

has the same form to that for a Venturi meter in which the Cd term has a value 

close to 1.0 and which accounts for minor mechanical (frictional) losses and 

departures from ideality. However, in the case of the orifice meter the Cd term is 

typically around a value of 0.6. This is because Cd for the orifice is accounting for 

two principal effects: 

• Mechanical losses (similar to the Venturi); 

• The contraction of the fluid jet downstream of the orifice. 

The fluid jet continues to converge downstream of the orifice to a point of minimum 

diameter (dc) called the vena contracta (as indicated in Figure 1).  Since dc is not 

known, (and which varies with the flowing conditions), the orifice diameter is used 

in its place and the change in flow prediction caused by this replacement is 

corrected for by Cd. This adjustment is significantly greater than that due to the 

mechanical losses. 

At first sight, it might be anticipated that, in contrast to the smoothly contoured 

venturi, the sharp edge orifice might cause significant eddying and frictional effects 

upstream of the plate. Measurements of the pressures and velocities throughout 

the flow field upstream and downstream of the plate using a 3-D laser Doppler 

anemometer system have been made by Morrison et al [3]. Diagrams from the 

paper illustrating the velocity vector field are reproduced below in Figure 2: 

 

Figure 2 - Orifice Plate Vector Field  

The arrows in the figure indicate the direction of flow and their length indicates the 

magnitude of the velocity associated with the fluid at that point. The figure 

illustrates the smoothly contoured streamlines upstream of the orifice indicating 

little induced turbulence1 and hence small mechanical losses (there is a small zone 

of recirculation at the upstream base of the orifice). Though the orifice does not 

have a converging pipe section to the orifice aperture, the fluid forms its own 

 
1 Induced turbulence is that caused by the flow passage shape in excess of that 

normally present in the flow. The energy resident in the turbulence is not usually 

recovered as mechanical energy and is consequently converted to heat – see [4].  
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smoothly converging jet.  Hence, rather counter-intuitively, flow into the orifice and 

Venturi meters form remarkably similar stream tubes.  

In contrast, downstream of the orifice there are large zones of recirculation 

surrounding the fluid jet, in which more significant induced turbulence and hence 

losses are experienced. Downstream of the orifice is where the mechanical losses 

occur; the absence of a smooth divergent pipe section results in considerable 

induced turbulence. 

If the vena contracta diameter could be determined, then the element of the 

discharge coefficient that compensates for the use of do in place of dc could be 

eliminated and the discharge coefficient, compensating for losses alone, would be 

much closer to one, similar to the venturi. 

The introduction of third pressure tapping provides additional measurements that 

can be used to calculate the vena contracta diameter and generate a new flow rate 

equation for the orifice meter.  

2.2 New Orifice Flow Rate Equation – Incompressible Flow 

The orifice plate with three pressure tappings and three differential pressure 

measurements is illustrated schematically in Figure 3: 

 

Figure 3 - Schematic of Orifice Plate with Three Differential Pressure 

Measurements  

In addition to the differential pressure measurement across the orifice plate ∆Pt, 

the introduction of the third downstream pressure tapping allows the measurement 

of the recovered pressure ∆Pr and pressure loss ∆Pppl differentials to be measured. 

Also indicated in the Figure 3 are the outlines of two control surfaces: 

• The upstream control surface, outlined in green, extends from a plane, 

perpendicular to the axial fluid flow, (where the normal pipe flow is just 

unaffected by the orifice), along the pipe walls, across the orifice plate 

upstream surface, through the orifice aperture, over the surface of the 

fluid jet protruding into the downstream section and finally covering the 

vena contracta surface normal to the flow. 

• The downstream control surface, outlined in red, extends from the vena 

contracta and fluid jet surface across the downstream side of the orifice 

plate along the pipe walls to a plane where the normal pipe flow is 

resumed. 
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The pressure downstream of the orifice at the vena contracta is assumed to be the 

same as that just outside the streamlines of the jet and on the back side of the 

orifice plate. Hence, the measured pressure at the pipe wall, (downstream corner 

tapping), is assumed to be the same as vena contracta pressure. Urner [10] applies 

this same assumption in the development of Equation (7) for the Pressure loss in 

ISO 5167-2 [2]. 

The analysis is based on measuring the differential pressure across the orifice at 

the plate faces, i.e., using corner tappings. In practice, most tappings are flange 

mounted and located away from the face. The desired corner tapping differential 

pressure is calculated from a flange-based measurement using the components of 

the ISO 5167-2 discharge coefficient and is discussed further in Appendix A.4. 

Three sets of physical laws can be applied across these control surfaces: 

• Conservation of mass flow 

• Conservation of momentum 

• Conservation of energy.  

From the application of the relevant equations over the control surfaces, a new 

equation for the mass flow has been derived: 

𝑄𝑚 =
𝜋𝑑𝑜

2

4𝛽2
𝛥𝑃𝑟√𝜌

√2(1 − 𝛽2)(𝛥𝑃𝑟 + 𝛥𝑃𝑝𝑝𝑙)

 
(2) 

The full derivation of this equation is presented in Appendix A. 

The form of the equation is fundamentally different to the traditional flow equation 

(1) and not a slight adjustment to it. This is advantageous for the application of the 

Oculus method as the more independent the methods of estimating flow are, the 

lower the resulting uncertainty in the reconciled quantities. 

As part of the development of this equation, the vena contracta diameter and the 

unmeasured pressure (Pu) on entry to the upstream control surface are implicitly 

determined. (Appropriate rearrangement of the equations presented in Appendix A 

allow these quantities to be calculated explicitly). 

In the form presented above in (2), the new equation does not have a discharge 

coefficient. This is an ideal version of the new equation as there are mechanical 

losses which are accounted for in an expanded version described below.  However, 

it is interesting to observe how well this ideal equation predicts flow rates in 

comparison with the standard equation. 

This was tested using real data from a calibration facility in which water flows 

through an 8”, 0.4 beta orifice meter with three differential pressure 

measurements. Measured input variables, relative uncertainties and absolute 

uncertainties are listed in Table 1, which also includes the reference meter flow 

Qm,ref. 

 

Table 1 - 8”, 0.4 Beta Orifice DP Meter Variables and Parameters 

 

Measurement Unit Value Relative 

Uncertainty 

ΔPt Pa 100,448 ±0.4% of max 

ΔPr Pa 17,303 ±0.4% of max 

ΔPPPL Pa 83,169 ±0.4% of max 

dp m 0.2026 ±0.4% 

do m 0.0810 ±0.1% 

ρ kg/m3 998.2 ±0.27% 

Cd - 0.6019 ±0.50% 

Qm,ref kg/s 44.444 ±0.15% 
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The flow rate calculated using equation (2) is: 

• Ideal New Equation: 42.879 kg/s 

The new equation, without accounting for losses, is 3.5% below the reference 

value. In comparison, without the application of the discharge coefficient the 

traditional flow equation would be 40% low.  The new equation is much closer 

because it implicitly calculates the vena contracta diameter: 

• Vena contracta: 0.0639 m 

This serves to illustrate that the upstream mechanical losses are relatively minor 

and that the main component of Cd is accounting for the use of the orifice diameter 

in place of the vena contracta diameter. 

Mechanical losses can be included in the equations by adding a loss term to the 

Bernoulli equation associated with the upstream control surface. This has been 

expressed as a number, Nluc, of dynamic pressure terms, expressed in the form: 

𝐿𝑢𝑐 =
𝑁𝐿𝑢𝑐𝜌𝑈𝑝

2

2
 (3)  

Where, 

Luc Losses term from upstream pressure to vena contracta (kg/ms2) 

Up Pipe velocity (m/s) 

This is distinct to a discharge coefficient as it is related to the approach taken when 

calculating pipe losses in terms of velocity heads [4]. When accounting for losses 

the new equation becomes: 

𝑄𝑚 = 𝜌
𝜋𝑑𝑜

2

4𝛽2
√(1 − 𝛽2)(𝛥𝑃𝑟 + 𝛥𝑃𝑝𝑝𝑙) − √((1 − 𝛽2)(𝛥𝑃𝑟 + 𝛥𝑃𝑝𝑝𝑙))

2

− 𝑁𝑙𝑢𝑐𝛥𝑃𝑟
2

𝜌𝑁𝑙𝑢𝑐

 
(4) 

The inclusion of the losses term is described fully in Appendix A. At first sight, the 

mass flow appears to be inversely proportional to the square root of Nluc and 

therefore increase asymptotically to infinity as Nluc tends to zero. However, it also 

appears in the numerator and actually tends to the ideal version of the equation as 

Nluc tends to zero. 

A problem remains however, regarding the value of Nluc which is an empirical 

constant and therefore needs to be determined experimentally. 

The development of the Reader-Harris Gallagher equation for the discharge 

coefficient Cd, presented in ISO-5167 [2], is described extensively [5]. The 

equation was fitted to data collected from numerous sources over a considerable 

number of years. Hence, encoded in the Reader-Harris Gallagher equation is a 

wealth of experimental data. This implicit data was accessed by equating equations 

(1) and (4) to generate the following for the determination of Nluc: 

𝑁𝑙𝑢𝑐 = (1 − 𝛽4)2 (
1

𝐶𝑑
2(1 + 𝛽2)𝛽4

−
𝛥𝑃𝑟

2

4𝐶𝑑
4𝛽8(𝛥𝑃𝑟 + 𝛥𝑃𝑝𝑝𝑙)

2) (5) 

For the example described above in Table 1: 

• Nluc:  6.378 

• Mass Flow Rate: 44.517 kg/s 

The new equation, after accounting for losses, is 0.16% above the reference value. 

This may be compared with the traditional equation (1) which predicts: 

• Traditional Flow Rate: 44.523 kg/s 

Which is 0.18% above the reference value. 
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Though Cd does appear in the new flow rate equation via the losses term, its impact 

on the mass flow rate is considerably reduced compared with its direct impact in 

the traditional flow equation. 

This analysis is extended over the full range of the data points obtained from the 

test in Section 2.5. 

The uncertainty in the new equation has been calculated according to the methods 

described in the Guide to Expression of Uncertainty in Measurement (GUM) [6] and 

compared with that for the traditional equation (ISO 5167 [2]): 

• New equation: ±1.39% 

• Traditional equation: ±0.59% 

The new equation does not provide an improved uncertainty in the calculated flow 

rate compared with the traditional approach. However, it does provide a relatively 

independent estimate of flow that still exhibits a reasonably low uncertainty.  

The new equation is not intended as a replacement of the current equation, which 

is well established, named in contracts, and has worked extremely well over many 

years. It is complementary and was developed as an independent approach based 

on fundamental physics. It is possible its uncertainty could be reduced if the 

estimates of Nluc could be improved but the real advantage of the new equation is 

its inclusion in the data reconciliation and Kalman filtering techniques i.e., the 

Oculus approach, described in previous papers by the authors [7] and [8] and 

discussed in the next two sections. 

2.3 Application of Maximum Likelihood Uncertainty 

 

At the 2019 NSFMW, the authors presented: ‘Data Reconciliation In Microcosm - 

Reducing DP Meter Uncertainty’ [7]. Mathematical techniques, based on steady 

state data reconciliation, were developed to improve the performance of flow 

meters, including fine adjustments to the stated flowrate prediction while lowering 

uncertainty.  These techniques were collectively described under the term: 

‘Maximum Likelihood Uncertainty’ (MLU).  

 

MLU requires multiple instrument readings. In the case of differential pressure (DP) 

meters this is provided by axial pressure profile analysis facilitated by the third 

pressure tapping generating the three differential pressure readings: primary DP 

(ΔPt), recovered DP (ΔPr), and permanent pressure loss (ΔPppl).  Each of these 

differential pressures was used independently to calculate the flow rate and each 

of these flow calculations has its own flow coefficient, denoted Cd, Kr and Kppl, 

respectively. These flow rate equations were all of a similar form: 

 

𝑄𝑚,𝑡 ∝ 𝐶𝑑√Δ𝑃𝑡 (6) 

 

𝑄𝑚,𝑟 ∝ 𝐾𝑟√Δ𝑃𝑟 (7) 

 

𝑄𝑚,𝑝𝑝𝑙 ∝ 𝐾𝑝𝑝𝑙√Δ𝑃𝑝𝑝𝑙 
(8) 

 

MLU, applied to DP meters, reconciles the three measured DPs so that the three 

resultant calculated flow rates equal one another (satisfying mass balances) and 

the recovered and PPL DPs sum to the primary DP (satisfying the DP balance). It 

does this in a statistically optimal fashion in accordance with the uncertainties in 

the measurement sensors and associated input parameters. 

 

Instead of using equations (7) and (8), equation (4) was used in the MLU algorithm 

as input to the mass balance along with the traditional equation (1). The same DP 

balances were retained. Note that it is possible also to include equations (7) and 

(8), but for the purposes of this analysis they were excluded so the impact of the 

new equation could be determined more explicitly.  
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2.4 Application of the Kalman Filter 

 

The 2019 paper applied data reconciliation techniques to a single set of flow meter 

measurements obtained simultaneously at a specific time.  In effect this is ‘steady 

state MLU’.  The technique was extended in the 2020 paper [8] to take advantage 

of time, that is, the method was extended from a static to dynamic data analysis.  

 

In essence, steady state MLU extracts the maximum information from the existing 

measurements in order to obtain optimal estimates of the system variables at one 

instant in time.  Time provides an extra dimension in which repeated measurements 

by the same instruments generate additional information that can be exploited by 

the MLU techniques to improve the estimates of flow rate and further reduce its 

uncertainty. 

 

For example, for the case of the DP meter with three flow equations using three 

flow coefficients, it was assumed that flow coefficients remained ostensibly constant 

in time. This extra information was incorporated into the MLU technique using the 

Kalman Filter.  Kalman Filters are typically used to model dynamic systems where 

some relationship defines the evolution of the system state with time and updates 

the state with measurements. By analyzing multiple data grabs at different times, 

the Kalman Filter reduces the flow rate uncertainty and improves the estimation of 

the flow coefficients, thereby self-tuning the DP meter in-situ. 

 

The new equation was incorporated into the Kalman filter approach also. The values 

of Nluc and Cd were treated as independent variables and their estimated values 

were thereby improved. In an enhancement to the method presented in 2020 [8] 

Cd was expressed as a function of Reynolds number and the parameters of this 

function were assumed to be constant through time. The value of Nluc was afforded 

some variation with flow by the introduction of process noise which is a feature of 

the Kalman filter. The process noise represents the uncertainty in the physical 

model.  Though the initial assignment of this process noise is a matter of 

judgement, it is an adjustable parameter and its correct value is ensured using 

statistics output by the Kalman filter2. 

The flow coefficients were focussed on in the previous analysis, but the Kalman 

filter also improved the estimates of all the parameters in the equations, which 

included, for example, the orifice expansibility coefficient and the isentropic 

exponent. Indeed, this applies to any of the measured or unmeasured variables. 

This feature is particularly advantageous for the measurement of CO2 which 

presents challenges in terms of physical properties which exhibit non-ideal 

behaviour, notably at pressures and temperatures likely to be encountered in CCS 

processes. The auto-tuning of the physical properties to be consistent with the 

mass, momentum and energy conservation constraints will mitigate the impact of 

uncertainties encountered in the field, for example the presence of impurities, 

rapidly changing compressibility, incipient liquid condensation near the two phase 

region, etc. 

It should be noted that the MLU approach also performs this improvement in the 

parameters of the system, but the Kalman filter enhances this feature by utilising 

their behaviour as a function of time. 

2.5 Tests with Water Data 

The data from the calibration facility for water flow through an 8”, 0.4 beta orifice 

meter described above in Table 1 was used to assess the various approaches over 

a number of data points from the test. The results presented in Figure 4 compare 

the difference in flow rate with the Coriolis water reference meter for the standard 

equation (blue circles) and new equation (orange squares) at each data point. The 

figures along the x-axis indicate the reference mass flow rate associated with the 

data points. Note that this is not a scatter plot. Each pair of points allows a direct 

 
2 These are the innovation and auto-correlation statistics generated by the Kalman 

Filter. 
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comparison the two equations at the reference flow and are ordered sequentially 

(ordinally) from left to right in terms of increasing flow. 

Incompressible water flow metering is simpler than compressible gas flow 

metering, and as such water flow meters have relatively low mass flow prediction 

flowrate uncertainties.  Hence, with the reference and standard water flow orifice 

meters having low flowrate prediction uncertainties the effect of the new method 

is modest.  The effect of this method is more pronounced with compressible gas 

flow metering.  

 

 

Figure 4 – 8” 0.4 Beta Orifice Mass Flow Rate Difference with Reference 

Meter Traditional and New Equations 

As can be observed the new equation predicts similar flow rates to the traditional 

equation, though it is marginally closer to the reference meter at higher flow rates. 

The data from the test is not ideal with regard to the application of the Kalman 

filter. The test points were obtained at intervals with step changes in the flow 

occurring between points. The Kalman Filter still works but the maximum 

information cannot be extracted from the full time series data. This means that the 

potential uncertainty reduction offered by the Kalman filter cannot be exploited. 
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Figure 5 – 8” 0.4 Beta Orifice Mass Flow Rate Difference with Reference 

Meter Traditional and Oculus Kalman MLU Including Uncertainties 

Figure 5 presents the results of the Oculus Kalman filter approach, which is in terms 

of a scatter plot.  The Kalman Oculus results closely follow the traditional values 

except for the final data points at the highest flow rates where the agreement with 

the reference meter improves. 

Also shown on the plot are the 95% uncertainty confidence limits for the Kalman 

Oculus and traditional values. The reduction in uncertainty delivered by the Oculus 

approach is evident especially at lower flow rates. This means that Oculus 

effectively extends the working range of the orifice meter. 

With these four reported flows based on different measurement methods: 

• a reference meter; 

• the traditional mass flow is based on the differential pressure across the 

orifice plate; 

• the new equation is based on the recovered and permanent pressure loss 

differentials; 

• the Oculus results are based on a combination of all three differential 

pressure measurements; 

there is good agreement between them and all are well within the standard 

reported uncertainty. 

It does appear that the uncertainty in any one of the reported flow rates is lower 

than the standard uncertainties calculated using the Type B approach as described 

in the GUM [6].  Indeed, the uncertainties generated by Oculus could be considered 

to eb Type A uncertainties, that is: “method of evaluation of uncertainty by the 

statistical analysis of a series of observations”. By extension this also means that 

in effect the additional measurements allow the uncertainty in the traditional 

reported mass flow to be reduced.  In particular, the de facto uncertainty of ±0.5% 

(quoted in [2]) for the discharge coefficient Cd may potentially be a candidate for 

reduction as this covers a wide range of operation. Though not the subject of this 

paper, a more detailed analysis which allows a reduction in the standard flow rate 

uncertainty is a possibility. This would allow the flow calculated according to ISO 

5167-2 [2] to be reported with a reduced uncertainty in accordance with a Type A 

uncertainty as discussed in the GUM [6]. 
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Oculus has been shown to be applicable to orifice meters with incompressible flows. 

However, such incompressible flows, i.e., liquid flows, are known to be meter-able 

by various technologies at very low flowrate prediction uncertainties. Hence, 

traditional orifice meters in water flow service give rather low flowrate prediction 

uncertainties.  Therefore, Oculus only has the opportunity to make marginal further 

improvements.  This is what is seen in this example.  The traditional orifice meter 

never deviates from the reference meter by more than 0.2%.   Hence, for this 

application Oculus can only offer small improvements in mass flow prediction and 

associated uncertainty.  It is with compressible flow, i.e., gas flow, where Oculus 

can make a more substantial impact.  That is now discussed. 

 

3 A NEW ORIFICE FLOW RATE EQUATION - COMPRESSIBLE 

 

3.1 Traditional Orifice Flow Rate Equation 

The traditional equation is modified for compressible flow by the inclusion of an 

expansibility factor (ε): 

𝑄𝑚 =
𝜀𝐶𝑑𝜋𝑑𝑜

2√2𝜌𝛥𝑃𝑡

4√(1 − 𝛽4)
 (9) 

ε is determined, according to ISO-5167-2 [2], by: 

𝜀 = 1 − (0.351 − 0.256𝛽4 − 0.93𝛽8) (1 − (
𝑃𝑢
𝑃𝑐
)
1/𝑘

) (10) 

Where, 

Pu Upstream pressure in main pipe flow just prior to influence of orifice 

(Pa) 

Pc Downstream pressure at vena contracta (Pa) 

k Isentropic exponent. 

3.2 New Orifice Flow Rate Equation – Compressible Flow 

For compressible flow, the incompressible versions of the Oculus equations can be 

utilised, and the result multiplied by the expansibility factor calculated according to 

equation (10). 

However, the fact that the vena contracta diameter can be calculated using the 

new equation means that the expansibility can be calculated assuming a reversible 

expansion across the orifice jet to the vena contracta. This is similar to the approach 

adopted for Venturis. 

Since the gas expansion can be accounted for in two different ways, this 

redundancy allows the value and uncertainty of the isentropic coefficient of the gas 

to be improved in-situ, in accordance with the data. 

The development of the new orifice equation for compressible flow is a modification 

of that for incompressible flow. The same analysis over the upstream and 

downstream control surfaces is used along with the three sets of physical laws 

across these control surfaces: 

• Conservation of mass flow 

• Conservation of momentum 

• Conservation of energy.  

The equations are modified to recognise the change in density of the gas between 

the upstream plane, the vena contracta and the downstream plane. 
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An isentropic expansion is assumed to occur between the upstream plane and the 

vena contracta. The change in density can be calculated using the pressure 

difference between two locations and the gas’s isentropic exponent. 

An irreversible, adiabatic, (i.e. Joule Thomson), expansion is assumed to occur 

across the orifice between the upstream and downstream planes.  The Joule 

Thomson coefficient of the gas can be used to calculate the change in temperature 

between the two planes, and along with the drop in pressure, the change in gas 

density obtained. 

The MLU and Kalman filter techniques can then be applied using these equations 

for compressible flow. Additional parameters are now involved in the reconciliation, 

such as the gas density and isentropic exponent. 

The above approach is similar to that originally adopted by Buckingham [9], though 

it has been extended to include the third pressure tapping and the Joule Thomson 

expansion. 

3.3 Tests with CO2 and Natural Gas Mixtures 

Data from a calibration facility was obtained that compared the measurement 

results from an orifice meter (see Figure 6), against a reference turbine meter (see 

Figure 7) for natural gas with various concentrations of CO2, ranging from 2% to 

40% (molar).  The orifice meter had a downstream pressure tap and the three DP 

transmitters required for the axial pressure profile diagnostic system Prognosis and 

the Data Validation system Oculus.  

  
          Figure 6 – 8” Turbine Meter             Figure 7 – 8” 0.564β Orifice Meter 

The orifice meter diagnostic system Prognosis shows that the orifice meter system 

is operating correctly. Figure 8 reproduces the Prognosis results for a sample of the 

49 bar data at varying carbon dioxide concentrations.  All results inside the box 

indicates a correctly operating metering system. 
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Figure 8 – Sample 49 Bar(a) 8”, 0.564β Orifice Meter Prognosis Results 

for Varying CO2 Concentrations 

 

The results presented in Figure 9 compare the percentage difference in flow rate 

with the reference turbine meter for the standard orifice meter and for when the 

orifice meter runs Oculus for natural gas containing 2% CO2, i.e., a low 

concentration. There are four mass flowrates ranging from just over 1 kg/s to 

almost 4.5 kg/s. 

 

 

Figure 9 - Mass Flow Rate Difference with Reference Meter, Natural Gas 

containing 2% (molar) CO2 

As can be seen, for all four data points, Oculus reduces the difference with the 

reference meter flow in comparison with the traditional orifice measurement. 

Figure 10 is a similar plot but with 40% (molar) CO2 content, i.e., a high 

concentration: 
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Figure 10 - Mass Flow Rate Difference with Reference Meter, Natural Gas 

containing 40% (molar) CO2 

Oculus improves the traditional orifice result and is significantly closer to the 

reference meter at higher flows. 

There are 35 data points available and the mean absolute deviation for all the data 

points is presented in Table 2: 

 

Table 2 – Mean Absolute Deviation from Turbine Reference Meter, 

Natural Gas with Various CO2 Concentrations 

 

Meter Type Mean Absolute 

Deviation (%) 

8” 0.56 Beta Orifice Traditional  0.67% 

8” 0.56 Beta Orifice with Oculus 0.51% 

 

The orifice plate equipped with Oculus exhibits the lowest mean absolute difference 

across all the data points.  The orifice meter with Oculus is shown to cope with high 

concentrations of carbon dioxide (≤40%) while giving a flowrate prediction 

uncertainty of approximately 0.5% at 95% confidence. 

   

4 CONCLUSIONS 

By taking advantage of the orifice meter’s three differential pressure readings from 

the diagnostic system ‘Prognosis’, a new flowrate equation has been developed 

from first principles for the orifice plate. This has been used in conjunction with the 

standard ISO 5167-2 equation to provide an improved estimate of flowrate which 

exhibits a lower uncertainty than that associated with the standard equation. This 

has been achieved by employing the Oculus method which is based on MLU and 

Kalman filter techniques presented by the authors in two previous papers, at the 

2019 and 2020 NSFMWs. 

The efficacy of Oculus has been established for the incompressible case using water 

data from a calibration facility. However, for this application Oculus can only offer 

small improvements in mass flow prediction. It does improve the uncertainty 

(based on Type B input uncertainties) and extends the turndown of the meter.  
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It does appear that there is the potential for Oculus to improve the uncertainty in 

the standard reported flow rate. This can be achieved in situ, (i.e. as a live 

uncertainty), by considering the uncertainties quoted for Oculus as Type A 

according to the GUM [6], that is: “method of evaluation of uncertainty by the 

statistical analysis of a series of observations”. 

The equations have been extended to handle compressible gas flow, where Oculus 

can make a more substantial impact. This has been tested with CO2 and natural 

gas mixtures obtained from a calibration facility. The orifice plate equipped with 

Oculus is shown to cope with high concentrations of carbon dioxide (≤40%) while 

consistently improving the agreement with the reference meter when compared to 

the results from the standard orifice meter.  

This orifice meter equipped with Prognosis and Oculus is a viable meter capable of 

meeting the challenges of CO2 and natural gas measurement whilst enjoying the 

following benefits: 

• Lowest cost meter 

• No calibration requirements 

• Comprehensive diagnostic system available without calibration 

• Ability to handle two phase flow 

• Low mass flow uncertainty comparable with other meter types 

• Improvement in the estimate of physical properties associated with the 

flowing fluid. 

It is worth mentioning the future potential improvements of Oculus for measuring 

CO2 flow. The values of the isentropic exponent and Joule Thomson coefficient have 

been improved by the Oculus approach in the analysis presented.  However, it is 

proposed to extend the method to incorporate other properties: e.g. density 

calculations, compositional data, vapour liquid equilibria and phase transitions. 

What the orifice plate loses in pressure drop it compensates for with information. 
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5 NOTATION 

 

Ac Area of vena contracta (m2) 

Ao Area of orifice (m2) 

Ap Area of pipe (m2) 

Cd Discharge coefficient 

Cdn Cd Downstream flange term 

Cs Cd Reynolds number term 

Cup Cd Upstream flange term 

C∞ Cd at infinite Reynolds 

number 

dc Vena contracta diameter (m) 

do Orifice diameter (m) 

dp Pipe internal diameter (m) 

KPPL Permanent pressure loss 

coefficient  

Kr Recovered pressure 

coefficient 

Luc Losses from upstream to 

vena contracta (Pa) 

NLuc Number of dynamic pressure 

terms for Luc (Pa) 

Pc Pressure at vena contracta 

(Pa) 

Pd Pressure at downstream 

tapping (Pa) 

Po Pressure in jet stream at 

orifice aperture (Pa) 

Pod Pressure downstream of 

orifice at wall 
(corner tapping) (Pa) 

Pou Pressure upstream of orifice 

at wall (corner tapping) (Pa)  

Pu Pressure upstream (Pa) 

P1 Qm Mass flow rate 

(kg/s) 

Qm,l Mass flow rate from 

permanent pressure loss 

(kg/s) 

Qm,r Mass flow rate from 

recovered pressure 

differential (kg/s) 

Qm,ref Reference meter mass flow 

rate (kg/s) 

Qm,t Mass flow rate from orifice 

pressure differential (kg/s) 

Uc Average velocity at vena 

contracta (m/s) 

Uo Average velocity at the orifice 

(m/s) 

Up Average pipe velocity (m/s) 

β Ratio of the orifice diameter 

to pipe diameter 

ΔPppl Permanent pressure loss 

differential relative to 

upstream corner tapping (Pa) 

ΔPppl,fl Permanent pressure loss 

differential relative to 

upstream flange tapping (Pa) 

ΔPr Recovered pressure 

differential relative to 

upstream corner tapping (Pa) 

ΔPr,fl Recovered pressure 

differential differential 

relative to upstream flange 

tapping (Pa) 

ΔPt Orifice pressure differential 

corner tappings (Pa) 

ΔPt,fl  Orifice pressure differential 

flange tappings (Pa) 

ε Expansibility factor 

γ Ratio of the vena contracta 

diameter to pipe diameter 

κ Isentropic exponent 

ρ Density (kg/m3) 

Up Average pipe velocity (m/s) 

Up Average pipe velocity (m/s) 
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APPENDIX A SIMPLIFIED MATHEMATICAL MODEL 

A.1 Control Volume Upstream to Orifice and Vena Contracta 

 

 

A control volume may be drawn from upstream at Pu just prior to the formation of 

the orifice jet, along the walls of the pipe and over the upstream face of the orifice 

plate and continuing over the jet downstream of the orifice terminating at the vena 

contracta. 

Applying mass continuity across the control volume, flow only crosses at two 

surfaces at the upstream surface and the vena contracta: 

𝜌𝐴𝑝𝑈𝑝 = 𝜌𝐴𝑐𝑈𝑐 (11) 

Where: 

Ac Area of vena contracta (m2) 

Ap Area of pipe (m2) 

ρ Fluid density (kg/m3) 

Simplifying: 

𝑈𝑐 = 𝑈𝑝
𝐴𝑝

𝐴𝑐
 (12) 

Applying momentum equation across the control surfaces in the horizontal 

direction: 

𝑃𝑢𝐴𝑝 − (𝑃𝑜𝑢(𝐴𝑝 − 𝐴𝑜) + 𝑃𝑐𝐴𝑜) = 𝑄𝑚𝑈𝑐 − 𝑄𝑚𝑈𝑝 (13) 

Where: 

Ao Area of orifice (m2) 

Qm Mass flow rate (kg/s) 

The forces due to the pressure differential across the vertical surfaces (left and 

right) of the control volume are equated with the change in momentum of the fluid 

entering and leaving the control volume across the same control surfaces. 

The force due to pressure on the left-hand surface is just the product of Pu and the 

pipe area. The force due to the pressure on the right-hand surface is Pou upstream 

of the orifice applied over the whole solid plate area (Ap – Ao) plus Pc applied over 

the orifice area Ao. It is not just the vena contracta area Ac but also the sides of the 

cone shaped jet downstream of the orifice in the horizontal direction. 

The mass flow rate is given by: 
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𝑄𝑚 = 𝜌𝑈𝑝𝐴𝑝 (14) 

Substituting for m and dividing through by Ap: 

𝑃𝑢 − (𝑃𝑜𝑢 (1 −
𝐴𝑜
𝐴𝑝
) + 𝑃𝑐

𝐴𝑜
𝐴𝑝
) = 𝜌𝑈𝑝𝑈𝑐 − 𝜌𝑈𝑝

2 (15) 

Substituting for Uc and expressing area ratios in terms of diameters: 

𝑃𝑢 − (𝑃𝑜𝑢 (1 −
𝑑𝑜
2

𝑑𝑝
2
) + 𝑃𝑐

𝑑𝑜
2

𝑑𝑝
2
) = 𝜌𝑈𝑝

2 (
𝑑𝑝
2

𝑑𝑐
2
− 1) (16) 

Introducing β and γ: 

𝑃𝑢 − (𝑃𝑜𝑢(1 − 𝛽2) + 𝑃𝑐𝛽
2) = 𝜌𝑈𝑝

2 (
1

𝛾2
− 1) (17) 

Where: 

β  Ratio of the orifice diameter to pipe diameter 

γ  Ratio of the vena contracta diameter to pipe diameter 

We can also apply Bernoulli equation across the control volume: 

𝑃𝑢 +
𝜌𝑈𝑝

2

2
= 𝑃𝑐 +

𝜌𝑈𝑐
2

2
+ 𝐿𝑢𝑐 (18) 

Where: 

Luc Losses from u to c (Pa) 

Rearranging and utilising continuity: 

𝑃𝑢 − 𝑃𝑐 =
𝜌𝑈𝑝

2

2
(
1

𝛾4
− 1) + 𝐿𝑢𝑐 (19) 

 

A.2 Control Volume from Orifice and Vena Contracta to 

Downstream 

 

A control volume may be drawn from the back side of the orifice plate and the jet 

downstream of the orifice terminating at the vena contracta, along the walls of the 

pipe and over the downstream point of maximum pressure recovery Pd. 

The pressure downstream of the orifice at the vena contracta is Pc and assumed to 

be the same as that just outside the streamlines of the jet and on the back side of 
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the orifice plate. Hence, Pod, the measured pressure at the pipe wall, is assumed to 

be the same as Pc. Urner [10] applies this same assumption in the development of 

Equation (7) for the Pressure loss in ISO 5167-2 [2]. 

Applying momentum equation across the control surfaces in the horizontal 

direction: 

𝑃𝑐𝐴𝑝 − 𝑃𝑑𝐴𝑝 = 𝑄𝑚𝑈𝑝 − 𝑄𝑚𝑈𝑐 (20) 

Substituting for m, Uc and dividing through by Ap: 

𝑃𝑑 − 𝑃𝑐 = 𝜌𝑈𝑝
2 (

1

𝛾2
− 1) (21) 

A.3 Determination of Pipe Velocity (Up) 

We now have three equations (17), (19) and (21) in four unknowns Pu, Up, γ and 

Luc. Rearranging them and eliminating Pu and γ, we obtain the following: 

𝑈𝑝
2 =

(𝑃𝑑 − 𝑃𝑐)
2

2𝜌((1 − 𝛽2)(𝑃𝑜𝑢 − 𝑃𝑐) − 𝐿𝑢𝑐)
 (22) 

Or in terms of differential pressures: 

𝑈𝑝
2 =

𝛥𝑃𝑟
2

2𝜌((1 − 𝛽2)𝛥𝑃𝑡 − 𝐿𝑢𝑐)
 (23) 

Where: 

ΔPr  Differential pressure recovery (Pd – Pc) (Pa) 

ΔPt  Differential pressure across orifice (Pou – Pc) (Pa) 

If the differential pressure across the orifice is replaced by the sum of the recovered 

and permanent pressure loss: 

𝑈𝑝
2 =

𝛥𝑃𝑟
2

2𝜌 ((1 − 𝛽2)(𝛥𝑃𝑟 + 𝛥𝑃𝑝𝑝𝑙) − 𝐿𝑢𝑐)
 (24) 

Where: 

ΔPppl Permanent differential pressure loss (Pou – Pd) (Pa) 

 

γ can be calculated by rearranging Equation (21): 

𝛾 = (
(𝑃𝑐 − 𝑃𝑑)

𝜌𝑈𝑝
2

+ 1)

−0.5

 (25) 

If the loss term is equated to an equivalent number NLuc of dynamic pressure terms: 

𝐿𝑢𝑐 =
𝑁𝐿𝑢𝑐𝜌𝑈𝑝

2

2
 (26) 

Substituting in Equation (24) and rearranging to obtain the following expression in 

Up: 
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𝑈𝑝
4
𝜌𝑁𝐿𝑢𝑐

2
+ 𝑈𝑝

2(1 − 𝛽2)(𝛥𝑃𝑟 + 𝛥𝑃𝑝𝑝𝑙) +
𝛥𝑃𝑟

2

2𝜌
= 0 (27) 

Which is a quadratic in Up
2 and can be determined from: 

𝑈𝑝
2 =

(1 − 𝛽2)(𝛥𝑃𝑟 + 𝛥𝑃𝑝𝑝𝑙) − √((1 − 𝛽2)(𝛥𝑃𝑟 + 𝛥𝑃𝑝𝑝𝑙))
2

− 𝑁𝐿𝑢𝑐𝛥𝑃𝑟
2

𝜌𝑁𝐿𝑢𝑐

 
(28) 

A.4 Differential Pressure Conversion from Flange to Corner 

Tappings 

 

The above analysis is based on differential pressures measured across or with 

reference to the orifice plate surfaces, i.e., corner tapping measurements. If the 

measurements are made using flange tappings, then these need to be adjusted to 

obtain the equivalent pressure differentials for corner tappings. 

This performed using the various components of the ISO-5167-2 discharge 

coefficient Cd which as described in [5], can be broken down into four main terms: 

𝐶𝑑 = 𝐶∞ + 𝐶𝑠 + 𝐶𝑢𝑝 + 𝐶𝑑𝑛 (29) 

Where, 

C∞ Discharge coefficient using corner tappings at infinite Reynolds number 

Cs Slope term to account for increase in discharge coefficient at lower 

Reynolds number 

Cup Tapping term to account for the difference in the discharge coefficient 

when using an upstream flange tapping compared with a corner tapping 

Cdn Tapping term to account for the difference in the discharge coefficient 

when using a downstream flange tapping compared with a corner 

tapping. 

Hence, for corner tappings: 

𝑄𝑚 ∝ (𝐶∞ + 𝐶𝑠)√𝛥𝑃𝑡 (30) 

And, for flange tappings: 

𝑄𝑚 ∝ (𝐶∞ + 𝐶𝑠 + 𝐶𝑢𝑝 + 𝐶𝑑𝑛)√𝛥𝑃𝑡,𝑓𝑙 (31) 

Where, 

ΔPt,fl Differential pressure measured across flange tappings. 

Hence, ΔPt can be obtained from ΔPt,fl by: 

𝛥𝑃𝑡 =
(𝐶∞ + 𝐶𝑠 + 𝐶𝑢𝑝 + 𝐶𝑑𝑛)

2

(𝐶∞ + 𝐶𝑠)
2

𝛥𝑃𝑡,𝑓𝑙 (32) 

A similar analysis can be used to convert the recovered and permanent differential 

pressure measurements based on flanges (ΔPr,fl and ΔPppl,fl) to those based on 

corner tappings: 
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𝛥𝑃𝑟 = 𝛥𝑃𝑟,𝑓𝑙 + (1 −
(𝐶∞ + 𝐶𝑠 + 𝐶𝑢𝑝 + 𝐶𝑑𝑛)

2

(𝐶∞ + 𝐶𝑠 + 𝐶𝑢𝑝)
2 )𝛥𝑃𝑡,𝑓𝑙 (33) 

𝛥𝑃𝑝𝑝𝑙 = 𝛥𝑃𝑝𝑝𝑙,𝑓𝑙 − (1 −
(𝐶∞ + 𝐶𝑠 + 𝐶𝑢𝑝 + 𝐶𝑑𝑛)

2

(𝐶∞ + 𝐶𝑠 + 𝐶𝑑𝑛)
2

)𝛥𝑃𝑡,𝑓𝑙  (34) 

 


