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1 INTRODUCTION 

In 2009, the author presented a paper at the 27th North Sea Flow Measurement 

Workshop [1] in which a method was proposed that expressed the risk of loss 

associated with measurement or allocation uncertainty in terms of a monetary 

value. This was proposed as a method to be utilised in cost benefit analyses to 

allow more expensive meters, or methods of allocation, with lower uncertainties, 

to be compared against cheaper alternatives.  

The approach has subsequently been cited in several Flow Measurement Workshop 

papers, for example [2], [3], [4] and appears in both the NORSOK Standard I-106 

[5] and the UK Measurement Guidelines [6].  

The original paper presented a relatively brief discussion and development of the 

approach. This paper expands on the underlying basis of the approach and 

discusses issues that have arisen subsequently: 

• Is there any supporting evidence that it is the correct approach? 

• What is the underlying basis of the aversion to risk of loss? 

• Net present value (NPV) calculations; how do these fit in with the 

approach? Does a reduction in uncertainty change the discount rate? 

• Timelines; how do the risks evolve with time? 

• Do recent developments in economic analysis associated with ergodic 

theory inform the approach? 

The paper is organised as follows: 

• Section 2 presents the Integrated Risked Exposure to Loss (IRE Loss) 

equation, discusses its basis and development. 

• Section 3 discusses the concept of utility in terms of attitudes to risk 

aversion. 

• Section 4 describes the factors necessary to compute cash flows for NPV 

calculations and also the appropriate discount rate for evaluating 

measurement systems. 

• Section 5 describes models for the evolution of measurement error over 

time. 

• Section 6 highlights recent developments in economic theory associated 

with ergodicity and speculates whether the concepts are applicable to 

cost benefit analysis of measurement devices. 

 

2 INTEGRATED RISKED EXPOSURE TO LOSS 

 

2.1 Basic Equation 

 

The risked exposure to loss of revenue in the original paper was expressed by: 
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𝐿 =
𝑈

√8𝜋
 (1) 

 
Where: 

L IRE Loss in revenue terms  

U Absolute uncertainty in the measured or allocated quantity 

expressed, at the 95% confidence level, converted to 

equivalent revenue. 

This is a convenient form of the equation as uncertainties (usually at the 95% 

confidence level) are readily available for measurement devices and it is the most 

common metric of the expression of uncertainty in the energy industries. 

The NORSOK Standard I-106 [5] abbreviates the equation even further: 

𝐿~0.2 𝑈 (2) 

Hence, the exposure to loss is reduced to a factor, roughly 0.2 (i.e. 1 √8𝜋⁄ ), which 

is multiplied by the uncertainty. 

The absolute uncertainty of the measured quantity, e.g. flow of oil, can be readily 

converted to an equivalent revenue quantity using the oil price and then summed 

(integrated) over time to obtain a cumulative exposure to risk of loss of revenue or 

IRE Loss. This can be compared with the cost of the measurement equipment and 

allow a cost benefit analysis to be performed. In simple terms, the equation allows 

the benefit of the uncertainty associated with a measurement device to be 

compared with its cost. 

2.2 Cost Benefit Analysis 

The term ‘agent’ is used to represent decision makers associated with a project or 

company, tasked with comparing and selecting measurement equipment or 

allocation systems using cost benefit analysis.  

Revenues and costs are expressed in dollars ($). 

For example, an agent is faced with a decision about which of two flow 

measurement devices to install: 

• Meter A, costs $1,000,000 and has a relative uncertainty of ±0.25% 

• Meter B, costs $250,000 and has a relative uncertainty of ±1.0% 

Assuming the selected meter is required to measure oil production at a constant 

flow of 1,000 t/d and the lifetime of the field is 5 years, which meter should the 

agent select? 

Equation (1) allows a cost benefit analysis to be performed to answer this question 

and the calculation is illustrated in Table 1: 

Table 1 – Simple Example of Cost Benefit Analysis 

 

 Meter A Meter B Difference 

Total oil produced 

over 5 years (t) 

1,825,000 1,825,000  

Total oil revenue 

over 5 years ($) 

1,368,750,000 

(Note 1) 

1,368,750,000 

(Note 1) 

 

Meter relative 

uncertainty (±%) 

±0.25% ±1.0%  



Global Flow Measurement Workshop 
24-26 October 2023 

 

Technical Paper 
 

                    
3 

 Meter A Meter B Difference 

Absolute produced oil 

uncertainty (t) 

4,563 18,250  

Absolute revenue 

uncertainty, U ($) 

3,421,875 13,687,500  

IRE loss of revenue, 

L ($) 

696,495 2,785,981 -2,089,486 

Cost ($) 

 

1,000,000 250,000 750,000 

Note 1: The conversion from produced oil uncertainty in tonnes to revenue terms 

is calculated based on an oil price of $750/t. 

From the above analysis, the more expensive flow meter, Meter A, appears to be 

worth the additional cost of $750,000 as it reduces the IRE Loss of revenue by over 

$2,000,000. The reverse would be true if the production only lasted a year or would 

be marginal if it lasted two years. 

In this simplified illustration no account has been taken of discounting the revenue 

cash flow over time; this is addressed in Section 4. 

Also, a subtle assumption has been made in the above discussion in that the 

uncertainty in a flow rate, expressed in t/d, can be integrated over time by simple 

multiplication of the time interval to obtain the uncertainty in the total cumulative 

oil production in t. The validity of this assumption is discussed in Section 5 and 

extended in Section 6. 

2.3 The Importance of the Standard Deviation 

It should be emphasised that equation (1) is only valid if the uncertainty, U, is 

expressed at the 95% confidence level. There is no special significance about the 

95% level uncertainty it is merely a useful convention with which to express 

uncertainties. 

A more rigorous form of the equation is: 

𝐿 =
𝑈𝑘

𝑘√2𝜋
 (3) 

Where: 

k Coverage factor  

Uk Absolute expanded uncertainty with coverage factor k 

At the 95% confidence level, k=1.96. In effect, Uk/k is the standard uncertainty or 

standard deviation. If the uncertainty was expressed at the 99.7% confidence level 

then k =3. However the uncertainty is expressed, it has to be converted to the 

standard deviation. In the 2009 paper the exposure to loss was expressed first in 

terms of the standard deviation: 

𝐿 =
𝜎

√2𝜋
 (4) 

Where: 

σ Standard deviation converted to equivalent revenue 

The basis and development of the equation is described in the next sections. 

2.4 Premise 

The development of the equation is based on two postulates: 

The uncertainty in the measured quantity is described by the normal distribution. 
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The agent has a linear aversion to loss, but is indifferent to gains; i.e. it is the 

exposure to loss alone that the agent is concerned about. 

The justification for the first postulate and its implications are described in the next 

section. The second postulate is discussed further in Section 2.6 and Section 3. 

2.5 Normal Distribution 

The uncertainty in any output measurement or allocated quantity is almost certainly 

characterised by the normal distribution due to the Central Limit Theorem 

(discussed in Appendix G.2 of the Guide to the expression of uncertainty in 

measurement (GUM) [7]). 

Figure 2-1 illustrates the normal probability distribution for the simple example of 

a flow of 1,000 t/d measured by a meter with an uncertainty of ±1% (expressed 

at the 95% confidence level) or ±10 t/d in absolute terms, (equivalent to a standard 

uncertainty or standard deviation of ±5.1 t/d): 

Figure 2-1: Flow Measurement – Normal Distribution 

 

The probability density of the vertical axis is not a probability itself as it relates to 

an individual flow rate. Probabilities can only be expressed as lying between two 

flow rates. For example, the familiar 95% uncertainty values express the range of 

values that 95% of measured flow rates will fall from the true value. 

The graph is based on a hypothetical true oil flow of 1,000 t/d. The flow 

measurement device’s reported flow rate is represented by the horizontal axis. The 

probability of the reported measurement is proportional to the height of the blue 

line (as represented by the vertical ordinate axis). Hence, the probability of 

reporting a value of 993 t/d, under-reading by 7 t/d, is roughly half that of under-

reading by 4 t/d. There is an equal and opposite probability of over-reading by the 

same amounts, as indicated at +4 t/d. 

As discussed in Annex D of the GUM [7], the true value and actual error resulting 

from an under- or over-reading are unknowable quantities. All that can be known 

is the probability distribution of the amount of deviation of the actual measurement 
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from this true value. The term error used here does not mean a gross error due to 

a faulty measurement, it is used to refer to the difference between the reported 

(measurement reading) and (unknown) true value consistent with the legitimate 

uncertainty in the measurement device. 

The probability density function (blue line) is described by the equation: 

𝑝𝑑𝑓 =
1

𝜎√2𝜋
𝑒−

1
2

(
𝑥−𝜇

𝜎
)

2

 (5) 

Where: 

pdf Probability density function 

x Measured flow rate (t/d) 

μ True flow rate (t/d)  

In the example, μ is 1,000 t/d and the standard deviation, σ is 5.1 t/d (i.e. 

10/1.96). 

2.6 Integrated Risked Exposure to Loss 

It is more convenient to plot the distribution in terms of gains and losses about the 

true value: 

𝑧 = 𝑥 − 𝜇 (6) 

Where: 

z Gain/loss relative to true value (t/d) 

The gain/loss (z) is equivalent to the error mentioned above and the terms are 

used interchangeably. 

Hence, (5) becomes: 

𝑝𝑑𝑓 =
1

𝜎√2𝜋
𝑒−

1
2

(
𝑧
𝜎

)
2

 (7) 

This is plotted in Figure 2-2: 
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Figure 2-2: Gains and Losses – Normal Distribution 

 

In the above plot, the probability of a 7 te/d loss is approximately half that of a 4 

te/d loss. To capture the diminishing probability of larger losses the size of the loss 

can be multiplied by its probability of occurrence and summed, (or more strictly 

integrated), over the possible range of under-allocation. 

Because the measured oil is normally distributed, there is an equal probability of 

an over-allocation, or gain, However, it is the exposure to under-measurement or 

loss alone that is being considered as illustrated in Figure 2-3: 
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Figure 2-3: Losses – Normal Distribution 

 
Multiplying each level of loss (negative values of z) by the probability of its 

occurrence: 

 

𝑝𝑑𝑓 ∗ 𝑧 =
𝑧

𝜎√2𝜋
𝑒−

1
2

(
𝑧
𝜎

)
2

 (8) 

Which is plotted in Figure 2-4: 
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Figure 2-4: Loss Multiplied by Probability Density 

 
 

The product of z and the pdf is negative because z is a negative quantity for a 

loss. The integrated risked exposure to gain/loss (termed R) is obtained from the 

area under this curve, which is given by the integral: 

 

𝑅 = ∫
𝑧

𝜎√2𝜋
𝑒−

1
2

(
𝑧
𝜎

)
2

𝑑𝑧

0

−∞

 (9) 

 

The gains, i.e. z>0, are ignored so the integral is over the limits minus infinity to 

zero. Integrating: 

 

𝑅 = [
−𝜎

√2𝜋
𝑒−

1
2

(
𝑧
𝜎

)
2

]
−∞

0

 (10) 

 

Which, when evaluated, gives: 

 

𝑅 =
−𝜎

√2𝜋
 (11) 

R is termed the integrated gain/loss, it is positive for a gain and negative for a loss. 

The IRE loss, L, is just the negative of R and hence equation (4) is obtained as the 

negative of (11). 

2.7 Alternatives? 

In the original 2009 paper an alternative method of evaluating the exposure to loss 

was considered. This was termed the uncertainty approach and the exposure to 

loss was given by: 
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𝐿𝑎𝑙𝑡 = 𝑈95 (12) 

Hence, the loss is equal to the uncertainty of the measurement device expressed 

at the 95% confidence level. This results in an exposure to loss roughly 5 times 

that of the IRE loss. 

This equation was presented, as in the author’s experience, it was, and is, a 

commonly used approach in performing cost benefit analyses of measurement 

devices. However, it does not appear to have an underlying developmental basis in 

contrast with the IRE loss. 

The only case where it could conceivably be derived in the same way as equation 

(4), is for the case where the probability distribution of z is uniform as depicted in 

Figure 2-5:  

Figure 2-5: Gains and Losses – Uniform Rectangular Distribution 

 

However, due to the Central Limit Theorem, this is unlikely to be the case. 

 

3 UTILITY 

 

3.1 Loss Averse Agent 

The second postulate only considers losses and ignores the equally likely gains. If 

the gains were included in the analysis the exposure to gain/loss would integrate 

to zero. Hence, the second postulate assumes that the agent is only concerned with 

the exposure to losses and ignores any upside from possible gains. Is there any 

evidence to support that this is appropriate? 

The second postulate is, in effect, a utility function. The concept of utility is widely 

used in economics to model worth or value [8], for example in the quantification of 

risk versus return.  
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Also, the Introduction to Measurement Science and Engineering [9] presents utility 

analysis as a tool to compare and select instruments. 

The utility described by the second postulate is presented by the orange line in 

Figure 3-1, in terms of gains and losses: 

Figure 3-1: Utility Function of Second Postulate 

 

To be consistent with the example above, again the graph is nominally based on a 

hypothetical true oil flow of 1,000 t/d. The horizontal axis plots a range of values 

in terms of gains or losses (z), relative to this true value, resulting from the 

measurement.  

The vertical axis represents the utility of the agent. For measured values below the 

true flow, a loss is experienced, and the agent’s utility is equal to the loss. For 

measured values above the true flow, i.e. a gain, the utility is zero. In effect, this 

is describing the loss aversion postulate in terms of utility. To the loss averse agent, 

losses loom as their full lost value and any gains are ignored. It is the exposure to 

loss alone that the agent is concerned about. 

3.2 Neutral Agent 

The dashed blue line represents the utility of a neutral agent who values gains and 

losses equal to their actual value. As pointed out in the 2009 paper an agent with 

a neutral utility would be indifferent to how accurate the measurement device is. 

The logical consequence of this is that, since on average, the gains will even out 

with the losses, the neutral agent should always choose the cheapest measurement 

solution.  

For example, if purchasing an ultrasonic meter, such a neutral agent should prefer 

the cheapest version of the meter, e.g. a clamp on device compared with a more 

expensive in-line meter. 

This attitude, or approach, could be taken to absurd levels: 

• why not purchase wildly inaccurate meters? 
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• Why maintain them? 

• Why calibrate? 

This is arguably the logical, though extreme, conclusion of acting as a neutral 

agent. 

As stated above, the rationale is that gains losses due to measurement will average 

out and tend towards zero. This could be in two ways: 

• over time for an individual meter 

• across many systems of meters. 

The evolution and averaging of measurement errors through time and across 

systems is discussed further in Section 5. 

Importantly, the neutral agent described above does not account for other factors 

which affect the agent’s decision-making process, for example: 

• Reliability; cheaper, poorer quality measurement devices are more likely 

to fail. 

• The reputation of the company as a reasonable and prudent operator. 

• Poorer quality meters are more likely to develop gross errors and result 

in more frequent and larger mis-measurements. Mis-measurement 

corrections can be very significant resulting in multi-million dollar 

repayments. These can also be expensive in terms of adminstrative, 

accounting and legal costs which can easily exceed any savings made in 

meter costs. 

• Regulatory requirements. 

• Losses are not necessarily equal and opposite to gains. 

The final bullet highlights a problem with the risk neutrality approach. The gains 

and losses have been considered in simple revenue terms. If an agent accumulates 

sufficient losses, this can result in liquidation of the company. It is unlikely that the 

consistent under-reading of a single meter would solely result in the liquidation of 

a company, but it would contribute to its combined losses. Too many gains cannot 

result in liquidation but too many losses can. 

Finally, it appears inconceivable that a project constructed to produce a high value 

product such as oil, hydrocarbon gas, hydrogen, captured CO2, etc. would not wish 

to measure this accurately to ensure the correct value is obtained. 

3.3 Utility Functions 

If losses are not simply equal and opposite to gains, how are they to be evaluated 

quantitatively? Or more generally, how are all the less tangibly quantifiable factors 

listed in the previous section to be incorporated into a cost benefit analysis? 

As mentioned in Section 3.1, utility functions are an attempt to address these 

issues. Several utility functions have been proposed in the literature, for example: 

• Quadratic 

• Logarithmic 

• Exponential 

As an example, a quadratic utility function is presented in Figure 3-2: 
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Figure 3-2: Quadratic Utility Function 

 

The quadratic utility function above does exhibit a non-zero positive utility for gains 

but the negative utility associated with losses are more significant. In fact, equation 

(4) can be derived using a quadratic utility. 

Hence, the loss averse approach of the second postulate is one of a number of 

possible utility functions. Is there any supporting evidence that this loss averse 

function is a reasonable utility function and that it is widely applicable to agents in 

the real world? 

3.4 Prospect Theory 

Prospect theory [10] is a development from expected utility theory and is based on 

the behavioural economics developed by Daniel Kahneman and Amos Tversky in 

1979 (Daniel Kahneman won the Nobel Prize in Economics in 2002).  

Loss aversion is one of three principles that underlies their development of Prospect 

Theory. They found experimentally that the loss aversion ratio of agents is in the 

range 1.5 to 2.5, an average of around 2. This means that agents value losses 

twice as much as gains. 

The utility function presented in Figure 3-1 can be modified to be consistent with 

this. Instead of the utility of a gain being zero, it can be assigned a value equal to 

the gain. However, the utility of losses now become twice the value of the loss 

which results in the following plot: 
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Figure 3-3: Prospect Theory Utility Function 

 

If this utility function is inserted in equation (8) and a plot analogous to Figure 2-4 

drawn: 

Figure 3-4: Prospect Theory Utility Multiplied by Probability Density 

 

and integrated from minus infinity to plus infinity, the result is identical with that 

of equation (11). 
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This provides valuable supporting evidence that the loss averse result is reflective 

of agents’ behaviour in the real world. 

 

4 NET PRESENT VALUE CALCULATIONS 

 

4.1 Net Present Value 

NORSOK 106 includes a term for the Net Present Value (NPV) in its presentation of 

the IRE Loss equation.  

The NPV is calculated from: 

𝑁𝑃𝑉 = ∑
𝐶𝐹𝑛

(1 + 𝑟𝑝)
𝑛

𝑁

𝑛=1

− 𝐶𝑀 (13) 

Where: 

NPV Net Present Value ($) 

rp Project discount rate  

n Number of time period 

N Total number of time periods 

CFn Cash flow in time period n 

CM Cost of measurement device (CAPEX) 

The NPV is based on discounted cash flow (DCF) and is the most commonly used 

tool for project evaluation [11]. 

4.2 Discounted Cash Flow 

According to Brealey and Myers [12] in DCF calculations it is important to recognise 

that the cash flow is not the same as sales revenue. The cash flow is simply the 

difference between dollars received and dollars paid out. 

Among other costs, tax needs to be deducted from the revenue. However, the 

depreciation in the measurement equipment costs can be offset against the tax 

liability. 

Returning to the simplified example presented in Section 2.2, the undiscounted 

cash flow for one year is calculated: 

 

Table 2 – Simple Example Yearly Cash Flows 

 

  Meter A Meter B 

1 Sales revenue ($/y) 

 

273,750,000 273,750,000 

2 IRE loss of revenue 

($/y) 

139,299 557,196 

3 Meter depreciation 

(over 5 years) ($/y) 

200,000 50,000 

4 (=1-2-3) Pre-tax profit ($/y) 

 

273,410,701 273,003,505 

5 Tax at 40% ($/y) 

 
109,364,280 109,257,122 
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6 (=4-5) Profit after tax ($/y) 

= Cash Flow 
164,246,421 163,935,682 

The IRE loss has been subtracted from the revenue for each meter. To calculate 

the taxable profit the meter depreciation costs have been subtracted. 

In the example, the tax rate has been assumed to be 40% for illustrative purposes 

and is not meant to be representative of any country. Similarly, the depreciation of 

the meter costs has been assumed to be straight line over the 5 year life of field. 

The profit after tax is constant each year in this example but in the DCF calculation 

it is discounted each year in accordance with the project discount rate (rp), assumed 

initially to be 10% (per annum): 

Table 3 – Discounted Cash Flows, 10% Discount Rate 

 

Year Meter A Meter B 

1 149,314,928 149,032,438 

2 135,740,843 135,484,035 

3 123,400,767 123,167,305 

4 112,182,515 111,970,277 

5 101,984,105 101,791,161 
Total DCF 622,623,158 621,445,215 

The NPV of the two meters can now be calculated: 

Table 4 – NPV Comparison, 10% Discount Rate 

 

 Meter A Meter B 

CAPEX ($) 1,000,000 250,000 

DCF ($) 622,623,158 621,445,215 

NPV ($) 621,623,158 621,195,215 

Meter A’s NPV is greater than Meter B by $427,943 and therefore A should be 

selected. 

The above calculations can be condensed into the equation: 

𝑁𝑃𝑉𝐴 − 𝑁𝑃𝑉𝐵 = ∑
𝑅𝑛(1 − 𝑇)(𝜀𝐵 − 𝜀𝐴) +

𝑇(𝐶𝑀𝐴 − 𝐶𝑀𝐵)
𝑁

√8𝜋(1 + 𝑟𝑝)
𝑛

𝑁

𝑛=1

+ (𝐶𝑀𝐵 − 𝐶𝑀𝐴) (14) 

Where: 

Rn Sales revenue in year n 

εA Relative uncertainty, meter A  

εB Relative uncertainty, meter B 

T Tax rate  

rp Project discount rate 

CMA Capital cost, meter A  

CMB Capital cost, meter B 

The NPV calculations require a discount rate rp. What is the correct discount rate 

and is it consistent with the development of the IRE Loss? 
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4.3 Discount Rate 

The most widely used method to estimate the project discount rate is the Capital 

Asset Pricing Model (CAPM) [11] [12]. CAPM is itself based on Modern Portfolio 

Theory. 

Investors in stocks and shares are assumed to be risk averse and require a higher 

return for more risky investments, relative to the market portfolio (i.e. a well-

diversified portfolio). 

CAPM maps projects to equivalent share returns. The project discount rate (rp) is 

calculated from the following equation based on a similar security carrying the same 

risk as the project: 

𝑟𝑠 = 𝑟𝑓 + 𝛽𝑠(𝑟𝑚 − 𝑟𝑓) (15) 

Where: 

rs Expected return of security s 

rf Risk-free rate 

rm Expected market return  

βs beta of security s  

The risk-free rate is the return from a safe asset such as government bonds. The 

market return is that expected from a well-diversified portfolio of stocks (market 

portfolio) and the difference between the two is the risk premium of the market. 

The returns from a market portfolio of stocks will be more volatile, especially over 

the short term, than those from government bonds. Hence, investors require a 

higher return from the market portfolio. For the case of an individual company, it 

may be more or less volatile than the market as a whole and this is what β accounts 

for. 

Beta (β) is a statistical measure that compares the volatility of a stock against the 

volatility of the broader market, which is typically measured by a reference market 

index. In fact, it is the covariance of the stock with the market portfolio. Since the 

market is the benchmark, the market's beta is always 1. When a stock has a beta 

greater than 1, it means the stock is expected to increase by more than the market 

in up markets and decrease more than the market in down markets. Conversely, a 

stock with a beta lower than 1 is expected to rise less than the market when the 

market is moving up, but fall less than the market when the market is moving 

down. 

Company betas or indeed wider sector betas, e.g. oil and gas sector, are quoted in 

financial reports and can be readily obtained. The oil and gas sector is generally 

well correlated with the wider market and hence its beta varies around 1. 

Hence, equation (15) provides a level of return required by investors based on the 

volatility of the asset in relation to the market as whole. The volatility of stocks is 

measured by their variance or standard deviation. 

The company carrying out the project is assumed to be a publicly traded one in 

which investors can buy stocks. The market will determine the price of the stocks 

in the company, which in turn is influenced by the expected return on those stocks. 

The stock price also reflects the company’s cost of raising capital for the project. 

If the project is typical of the company’s usual activities, then the required project 

return rp can be assumed to be equal to rs calculated from equation (15) using the 

company’s beta. If the project is more or less risky, then the required return is 

adjusted up or down by finding an analogue company who performs such projects 



Global Flow Measurement Workshop 
24-26 October 2023 

 

Technical Paper 
 

                    
17 

and the beta changed accordingly. Hence, equation (15) provides a mechanism to 

calculate rp for any project based on its riskiness. The idea is that more risky 

projects should provide a greater level of return.  

However, investment in measurement equipment is motivated by different aims 

than the general motivation for the project as a whole, which is to generate profit 

from sales revenue of the product. Higher quality of the measurement equipment 

does not increase profits, but it does reduce uncertainty / risk / volatility in the 

revenues. 

What is the correct beta for a measurement device? A common approach is to 

discount the revenue whose risk is specific to the project at the risk-free discount 

rate [11]. This is because the beta of the risk due to the measurement itself is zero 

as it is uncorrelated with the market volatility and indeed the project return 

volatility. The additional risks introduced by measurement equipment are unrelated 

to the riskiness of project itself. 

The 10% discount rate assumed in the example in Section 4.2 is therefore not 

appropriate. The risk-free rate is more typically in the range 0% to 5%, hence 

assuming 3%, the NPV of the two meters is revised to: 

Table 5 – NPV Comparison, 3% Discount Rate 

 

 Meter A Meter B 

CAPEX ($) 1,000,000 250,000 

DCF ($) 752,200,513 750,777,422 

NPV ($) 751,200,513 750,527,422 

The case for Meter A is now more compelling as the difference in NPV has increased 

to $673,090. 

 

5 MEASUREMENT ERROR OVER TIME AND SYSTEMS 

 

5.1 Random Errors 

If the measurement gains/losses (z) are randomly distributed about the true value 

in accordance with the normal distribution and the gains/losses at each time step 

are independent of each other (this is additive white Gaussian noise), a plot of the 

form in Figure 5-1 is obtained for the meter errors through time: 
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Figure 5-1: Random Gains/Losses Through Time 

 
 

The above plot is based on the example presented in Section 2.2. 

The randomly fluctuating gains and losses around the true value are colour 

coded: grey for gains, red for losses. If the red loss values are summed over the 

1,000 days (in effect the gains are counted as zero in loss terms), the resultant 

summed loss is 2,165 t or 2.165 t/d on average. According to equation (3), the 

summed loss is predicted to be 2,035 t or 2.035 t/d on average. The plot above is 

only one instance of a randomly generated set of 1,000 data points. If the time is 

extended to 10,000 days or data points, the sum is 20,442 t or 2.044 t/d and if 

extended to a million data points, the sum is 2,037,145 t or 2.037 t/d. As the 

amount of data increases the accumulated loss tends to that predicted by 

equation (3). 

 

This confirms numerically that the calculated loss exposure values can simply be 

summed over time, as was assumed in the simplified example in Table 1. 

 

5.2 Components of Measurement Error 

The above plot assumes random fluctuations from day to day. Do the same 

fluctuations happen from hour to hour or second to second and do real 

measurement devices behave this way? 

Pashnina N, 2016 [4] discusses various components of measurement error: 

• Random measurement error; due to process noise, thermal effects, etc. 

• Systematic measurement error; remains relatively constant through 

time but is typically unknown, an example would be the orifice discharge 

coefficient calculated in accordance with ISO 5167-2 [13]. 

• Drift error; incremental change over time due to instrument ageing 

effects. 
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These three components are illustrated in Figure 5-2: 

Figure 5-2: Components of Measurement Error Through Time 

 
 

5.3 Error Evolution Through Time 

 

The growth of measurement errors and hence uncertainty with time is poorly 

understood according to Sydenham [9]. NASA Reference Publication 1342 [14] 

describes eight models for uncertainty growth time series, including two random 

walk models. Gelb et al [15] in Applied Optimal Estimation also considered 

random walk, random ramp and exponentially correlated random variables as 

models for measurement uncertainty. 

 

The random walk processes are specifically highlighted as they present an 

interesting and plausible mechanism for the evolution of random errors from one 

moment to the next. A simple discrete random walk process simulating 

measurement error is presented in Figure 5-3 for 5 systems labelled A to E: 
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Figure 5-3: Random Walk Error Through Time Multiple Systems 

 
 

The size of the change in z (Δz), from one time step to the next is normally 

distributed.  

What is apparent with this random walk model is that the variance is a function of 

time and hence the standard deviation increases with the square root of time. If 

uncalibrated the uncertainty in the measurement will continue to grow. 

What is also apparent, is that the gains and losses over time across an individual 

trajectory do not even themselves out as was observed with the white noise model 

of Figure 5-1.  

The averaging over time was presented as a possible justification for the adoption 

of the risk neutral approach described in Section 3.2 but this does not appear to be 

plausible if the random walk model of measurement error is at least in part true. 

Though the magnitude of the cumulative gain or loss over a period of operation will 

be random, it will not be zero. The distribution of the magnitude is Gaussian and 

increases with time. Hence, the assertion that gains and losses will average out 

over time is unlikely to be true and may be significant simply due to random effects. 

The potential consequences of this are discussed further in Section 6. 

 

5.4 Diversification Across Systems 

 

The averaging of risk across multiple systems was also presented as a possible 

justification for the adoption of the risk neutral approach. It is theoretically 

plausible to mitigate the risks of persistent errors due to systematic and drift 

components owning multiple installations. This is illustrated in Figure 5-4: 
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Figure 5-4: Systematic Errors Across Multiple Systems 

 
 

The true values are indicated by the horizontal grey lines and the measurement in 

parallel installations A to E are shown fluctuating randomly round some 

systematic offset. If the agent had a portfolio of such systems, the risks could be 

diversified away. 

Assuming the agent has sufficient installations to reduce the exposure of such 

systematic and drift uncertainties, so the errors even themselves out across 

facilities is unlikely to be practical. Small companies may only have one or part 

ownership in a single or small number of facilities and hence not be able to diversify 

away the risks across many installations. Even large multinationals are unlikely to 

have so many installations that they can confidently diversify the risks of poor 

measurement away.  

 

6 ERGODICITY 

 

6.1 An Inconsistency 

 

The original IRE Loss equation was derived based on fixed values of measurement 

uncertainties. The preceding section has just discussed how measurement errors 

and uncertainties of real systems grow with time. 

It may be argued that this is mitigated by the regular calibration of measurement 

devices. However, not all measurement devices associated with allocation systems 

are subjected to the same rigorous calibration regime demanded of custody 

transfer meters. 

Hence, there appears to be an inconsistency between plausible models of the time 

dynamics of measurement error growth and the notion of a fixed uncertainty. 
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6.2 Subjective Utility? 

The discussion in the previous sections has encompassed uncertainty and risk from 

both a measurement error perspective and in economic terms with regard to 

calculating an appropriate discount rate. 

The introduction of a utility function was used to quantify risk and loss aversion in 

the integrated risk exposure calculations. Utility is also the basis of the CAPM and 

hence discount rate for NPV calculations. 

Though the loss averse utility function postulated in Section 2.4, was justified in 

Section 3 based on behavioural economics, and was required to develop the IRE 

loss, associated cost benefit and NPV calculations, at some level it appears 

subjective and incongruous with the rest of the analysis. In fact, there are multiple 

utility functions available of which the parameters can be adjusted to reflect 

different attitudes to risk. 

6.3 Ergodicity Economics 

Ole Peters of the London Mathematical Laboratory and Murray Gell-Mann1 of the 

Sante Fe Institute published a paper in 2016 titled: “Evaluating gambles using 

dynamics” [16], which was the most downloaded article from the journal that year. 

This is one of series of papers generated from an ongoing area of active research 

[17]. 

Notably, they challenged the necessity for subjective utility functions. 

The aim of ergodicity economics is to carry out a fundamental re-evaluation of the 

basis of more traditional economic theory. 

In an ergodic scenario, the average outcome of a group is the same as the average 

outcome of the individual over time. This is not typically true for individual agents 

who are faced with a one-shot decision, which they invest in across a period of 

time.  

By reframing in terms of the growth dynamics for an agent across time rather than 

across systems, some interesting results have been obtained. The dynamics of 

wealth growth can be modelled in terms of random walks. Depending on the precise 

dynamics they demonstrated that the equivalent of logarithmic utility is a rational 

approach in terms of optimising wealth growth, thus eliminating the subjectivity of 

the utility function. 

6.4 Application to Measurement Systems 

In the context of measurements, if ergodic, the uncertainty across a set of 

measurement devices would be identical to the uncertainty experienced by one 

measurement device through time. 

This is evidently not true of measurement devices: 

• Systematic biases vary randomly across devices but are fixed through 

time for an individual meter. 

• Similarly the rate of drift across devices may be randomly distributed 

but the individual meter will experience a systematically increasing bias. 

 

1  Murray Gell-Mann won the 1969 physics Nobel Prize for his work on elementary 

particles, which introduced the concept of the quark. 
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• If errors develop through time as a random walk the uncertainty grows 

as a function of the time, but the uncertainty does not increase across 

sytems.  

The parallels of the factors affecting cost benefit analysis for measurement systems 

and those associated with ergodicity economics appear apparent. The purpose of 

this section is not to discredit the existing IRE Loss equation but to highlight the 

possibility of developing the cost benefit analysis of measurement devices using 

the methods of ergodicity economics into a more complete and robust 

methodology. 

Ergodicity economics provides a potential way forward, eliminating the need for a 

subjective utility theory and reflecting actual error growth models. 

 

7 CONCLUSIONS 

 

The IRE Loss equation can be developed based on two postulates: that 

measurement errors are normally distributed, and agents have a loss averse utility 

function. 

The approach was further justified on the basis of results from behavioural 

economics which showed experimentally that agents value losses twice as much as 

gains. 

Expressing the IRE Loss equation in terms of measurement uncertainty at the 95% 

confidence level is merely a matter of convenience. More fundamentally it is 

expressed in terms of the standard uncertainty or standard deviation of the 

measurement errors. 

A commonly adopted alternative to the IRE Loss equation in cost benefit analyses 

is to use the 95% confidence uncertainty as the exposure to loss. This has been 

demonstrated only to be applicable if the uncertainty follows a uniform rectangular 

distribution. 

NPV calculations need to correctly account for tax and the depreciation of the 

measurement device. Since, the uncertainty introduced by measurement devices 

is uncorrelated with the wider risks associated with the revenue generation from 

the project, the correct discount rate in the NPV calculations should be the risk- 

free rate, typically that of government bonds. 

The assumption that the gains and losses due to randomly distributed 

measurement errors will average out towards zero over time for a meter have been 

shown to be implausible. 

Recent developments in ergodicity economics potentially offer the possibility of 

further developing the cost benefit analysis method into a more complete and 

robust methodology. 

 

8 NOTATION 

 

Cd Discharge coefficient 

CM Cost of meter 

CMA Capital cost, meter A 

CMB Capital cost, meter B 

DCF Discounted cash flow 

k Coverage factor 

L Integrated risked 

exposure to loss 

n Time step number 
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N Total number of time steps 

NPV Net present value 

pdf Probability density 

function 

R Integrated risked 

exposure to gain/loss (z) 

Rf Sales revenue, year n 

rf Risk free interest rate 

rm Expected market return 

rp Project discount rate 

rs Expected return on 

security s 

T Tax rate 

U Absolute uncertainty 

x Measured flow rate (t/d) 

z Gain/loss 

βs Covariance of security s 

with market 

Δz Change in z between time 

steps  

εA Relative uncertainty meter 

A 

εB Relative uncertainty meter 

B 

μ True flow rate (t/d) 

σ Standard deviation 
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