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1. INTRODUCTION 

 

1.1 Overview 

 

At the 2019 NSFMW, the authors presented: ‘Data Reconciliation In Microcosm - 

Reducing DP Meter Uncertainty’ [1]. Mathematical techniques, based on steady 

state data reconciliation, were developed to improve the performance of flow 

meters, including fine adjustments to the stated flowrate prediction while lowering 

uncertainty.  These techniques were collectively described under the term: 

‘Maximum Likelihood Uncertainty’ (MLU).  

 

MLU requires multiple instrument readings. In the case of differential pressure (DP) 

meters this is provided by axial pressure profile analysis facilitated by a third 

pressure tapping generating three differential pressure readings: primary DP (ΔPt), 

recovered DP (ΔPr), and permanent pressure loss (ΔPl).  Each of these differential 

pressures can be used independently to calculate the flow rate and each of these 

flow calculations has its own flow coefficient, denoted Cd, Kr and Kppl, respectively. 

 

MLU, applied to DP meters, reconciles the three measured DPs so that the three 

resultant calculated flow rates equal one another (satisfying mass balances) and 

the recovered and PPL DPs sum to the primary DP (satisfying the DP balance). It 

does this in a statistically optimal fashion in accordance with the uncertainties in 

the measurement sensors and associated input parameters. 

 

The 2019 paper applied data reconciliation techniques to a single set of flow meter 

measurements obtained simultaneously at a specific time.  In effect this is ‘steady 

state MLU’.  This technique is now extended to take advantage of time, that is, the 

method is extended from a static to dynamic data analysis. 

 

In essence, steady state MLU extracts the maximum information from the existing 

measurements in order to obtain optimal estimates of the system variables at one 

instant in time.  Time provides an extra dimension in which repeated measurements 

by the same instruments generate additional information that can be exploited by 

the MLU techniques to improve the estimates of flow rate and further reduce its 

uncertainty. 

 

For example, a DP meter that monitors the meter’s axial pressure profile, has three 

flow equations using three flow coefficients.  These flow coefficients are ostensibly 

constant in time this extra information can be incorporated into the MLU technique 

using the Kalman Filter.  Kalman Filters are typically used to model dynamic 

systems where some relationship defines the evolution of the system state with 

time and updates the state with measurements. By analyzing multiple data grabs 

at different times, the Kalman Filter reduces the flow rate uncertainty and improves 

the estimation of the flow coefficients, thereby self-tuning the DP meter in-situ. 
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This paper describes the extension of the MLU approach to include the time 

dimension by application of a Kalman filter to an orifice meter with three DP 

measurements. (It should be noted that the approach is applicable to any DP meter 

and not restricted to the orifice meter type). Throughout the rest of the document 

the approach is termed ‘Kalman MLU’. 

 

2 INTRODUCTION TO THE KALMAN FILTER 

 

2.1 Overview of the Kalman Filter 

 

The Kalman filter is extensively used in various sections of science and industry, 

e.g. guidance, control, and positioning of vehicles, signal processing, and 

econometrics [7], [8]. The Kalman filter is applied to dynamic systems and uses 

process models, along with measurements with statistical noise, to provide best 

estimates of variables in the system.  It is an algorithm that uses a process model 

to predict how the system’s variables and parameters propagate from one time 

step to the next and reconciles these with a series of measurements observed over 

time, containing statistical noise (i.e. uncertainty).  It does this in a statistically 

optimal fashion and produces estimates of the variables and parameters that tend 

to be more precise than those based on measurements alone.  

 

The algorithm works in a two-step process as indicated schematically in Figure 1. 

 

  

 
 

Figure 1 Kalman Filter Algorithm 

 

In the prediction step, the Kalman filter produces estimates of the current state 

variables, along with their uncertainties. Once the outcome of the next 

measurement (necessarily corrupted with some amount of uncertainty, including 

random noise) is observed, these estimates are updated (in the update step) using 
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a weighted average, with more weight being given to estimates with lower 

certainty. The algorithm is recursive in that it uses only the present input 

measurements and the previously calculated state and its uncertainty matrix; no 

additional past information is required. 

 

In effect the Kalman filter is data reconciliation extended into the time domain. It 

exploits temporal dependencies using a model that describes how the system 

parameters and variables propagate from one time step to the next. It uses the 

same weighted least square uncertainties, as data reconciliation, to update the 

values of the parameters and variables in the system. 

 

A number of extensions and generalised methods have been developed over the 

years for the Kalman filter, but the method proposed here is relatively simple, in 

that the full Kalman filter includes terms for control variables which are not required 

for this application to DP meters. A more complete description of the Kalman filter 

and its applications is provided in [2]. Additionally, the Kalman filter has been 

successfully applied to estimate well potentials on an offshore platform [6]. 

 

2.2 Application to Differential Pressure (DP) Flow Measurement Devices 

 

The mathematics of steady state data reconciliation has previously been used by 

the authors to develop an approach to reduce the uncertainty associated with 

various measurement devices [1]. This was termed the MLU method. 

 

An enhancement to this approach is to incorporate the time dimension. Hence, the 

use of the Kalman filter appeared a natural extension of the ideas used to develop 

steady state MLU. 

 

Time provides an extra dimension in which repeated measurements by the same 

instruments generate additional information that can be exploited by the MLU 

techniques to improve the estimates of flow rate and further reduce its uncertainty.  

 

It also allows the temporal dependencies of system parameters to be exploited. For 

example, a DP meter that monitors the meter’s axial pressure profile, has three 

flow equations using three flow coefficients.  These flow coefficients are ostensibly 

constant in time. This extra information can be incorporated into the MLU technique 

using the Kalman Filter. The various steps associated with this implementation of 

the Kalman filter for DP meters are described briefly below. 

 

The flow coefficients display a weak variation with Reynolds number. If the flow 

rate experienced by a meter changed significantly, and hence the Reynold’s number 

changed, then the above assertion that the flow coefficients remain constant would 

not be strictly true. However, for simplicity in this discussion, the weak variation 

with Reynolds number has been ignored, though this dependency will be 

incorporated in the full algorithm. 

 

State Variables 

 

The six state variables of the DP measurement system have been defined as: 

 

• Primary or ‘traditional’ DP (ΔPt) 

• recovered DP (ΔPr) 

• permanent pressure loss DP (ΔPPPL) 

• modified discharge coefficient (Cd’) 
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• modified expansion coefficient (Kr’) 

• modified permanent pressure-loss coefficient (Kppl’) 
 

The so-called modified coefficients (indicated by the “ ’ ” superscript) are derived 

from the more traditional coefficients Cd, Kr and KPPL. 

 

From ISO-5167 [4] and Steven [5] the ‘primary’ (or 'traditional'), 'recovered' and 

'permanent pressure loss' mass flow rates  𝑚𝑡̇ , 𝑚𝑟̇  and �̇�𝑃𝑃𝐿 are given by equations 

(1), (2) and (3):   

 

𝑚𝑡̇ = 𝐸𝐴𝑡𝑌𝐶𝑑(2𝜌Δ𝑃𝑡)1/2 (1) 

 

𝑚𝑟̇ = 𝐸𝐴𝑡𝐾𝑟(2𝜌Δ𝑃𝑟)1/2 (2) 

 

�̇�𝑃𝑃𝐿 = 𝐴𝐾𝑃𝑃𝐿(2𝜌Δ𝑃𝑃𝑃𝐿)1/2 (3) 

 

Where 

• 𝐷 is the meter inlet diameter and the meter inlet area, A =
πD2

4
 

• 𝑑 is the meter throat diameter and the meter throat area, 𝐴𝑡 =
π𝑑2

4
 

• 𝐸 is the ‘velocity of approach’, E = 1/ √(1-β4)^0.5 

• 𝛽 is the ‘beta’, β = √(At/A) 

• 𝐶𝑑 is the discharge coefficient  

• 𝐾𝑟 is the expansion coefficient  

• 𝐾𝑃𝑃𝐿 is the permanent pressure-loss coefficient  

• 𝑌 is the fluid's expansibility 

• ρ is the fluid's density 

 

At stable operating conditions, D, d, E, A, At, Cd, Kr, KPPL and Y should all remain 

constant. Hence, modified coefficients can be defined to be: 

 

𝐶𝑑
′ = 𝐸𝐴𝑡𝑌𝐶𝑑 (4) 

 

𝐾𝑟
′ = 𝐸𝐴𝑡𝐾𝑟 (5) 

 

𝐾𝑃𝑃𝐿
′ = 𝐴𝐾𝑃𝑃𝐿 (6) 

 

. 

 

Prediction Step 

 

The first equation in the predict phase of the Kalman filter employs the transition 

matrix, which predicts how the state variables from the previous time step (t-1) 

propagate to the current time step (t). 

 

For the case of the modified flow coefficients, the model assumes that they are 

constant throughout time, i.e.: 
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𝐶𝑑,𝑡
′ = 𝐶𝑑,𝑡−1

′ = 𝐶𝑑
′  (7) 

 

𝐾𝑟,𝑡
′ = 𝐾𝑟,𝑡−1

′ = 𝐾𝑟
′ (8) 

 

𝐾𝑃𝑃𝐿,𝑡
′ = 𝐾𝑃𝑃𝐿,𝑡−1

′ = 𝐾𝑃𝑃𝐿
′  (9) 

 

 

The filter is provided with initial estimates of the values of these parameters and 

their uncertainty. However, it should be noted that their true value is not known, 

only that the true value remains constant in time. The Kalman filter uses this 

information and the measurements to update its estimate of these parameters and 

improve the uncertainties of those estimates. 

 

For the case of the three differential pressures, these can vary unpredictably as 

dictated by the fluctuations in the process from one time step to the next. 

 

The uncertainty, or more strictly the covariance, in the previous time step’s state 

variables i.e. an output from the Update Step of the Kalman filter run at the 

previous time step (t-1), is used and propagated forward in time adding process 

noise. The process noise represents the uncertainty in the physical model. 

 

For the case of the flow coefficients in this model, this process noise is zero since 

they remain constant. For the case of the differential pressures, as the flow and 

pressure can fluctuate around the mean unpredictably each has noticeable loggable 

process noise. Though the assignment of this process noise may appear somewhat 

arbitrary at this point, it is an adjustable parameter and its correct value can be 

ensured by monitoring the innovation and auto-correlation statistics output by the 

Kalman filter. 

 

Update Step 

 

This step updates the state variables using the data from available measurements. 

It also imposes the mass and pressure balance constraints associated with the 

system. 

 

The available measurements are the three differential pressure measurements. The 

DP measurements are necessarily uncertain and hence the Kalman filter’s 

estimates of the values of the flow coefficients are updated using a weighted 

average of all estimates and measurements, with more weight being given to those 

with lower uncertainty. The constraints are also imposed, and these adjust both 

the coefficients and measured differential pressures, to ensure they are complied 

with. 

 

As previously described in [1], the constraint equations are: 

 

𝐶𝑑,𝑡
′ (2𝜌Δ𝑃𝑡)1/2 − 𝐾𝑟,𝑡

′ (2𝜌Δ𝑃𝑟)1/2 = 0 (10) 

 

 

𝐶𝑑,𝑡
′ (2𝜌Δ𝑃𝑡)1/2 − 𝐾𝑙,𝑡

′ (2𝜌Δ𝑃𝑙)1/2 = 0 (11) 
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𝐾𝑙,𝑡
′ (2𝜌Δ𝑃𝑙)1/2 − 𝐾𝑟,𝑡

′ (2𝜌Δ𝑃𝑟)1/2 = 0 (12) 

 

for the mass balances, and 

 

Δ𝑃𝑡 − Δ𝑃𝑟 −  Δ𝑃𝑃𝑃𝐿 = 0 (13) 

 

for the pressure balance. 

 

Because the uncertainty of the measurements and the process model uncertainty 

(process noise) may be difficult to determine precisely, it is common to discuss the 

filter's behaviour in terms of gain. The Kalman gain is a function of the relative 

uncertainty of the measurements and current estimates of the flow coefficients. 

These can be tuned to achieve particular performance. With a high gain, the filter 

places more confidence on the measurements, and thus follows them more closely. 

With a low gain, the filter follows the model predictions more closely, smoothing 

out noise but decreasing the responsiveness. The gain is adjusted using the process 

noise described in the Predict Step.  

 

The uncertainties of the state variables, i.e. the updated coefficients and DPs, are 

also filter outputs. These are in the form of a covariance matrix which is a familiar 

feature in data reconciliation techniques. This covariance matrix, along with the 

uncertainty in the fluid density, is then used in the determination of the uncertainty 

in the calculated mass flow rate at each time step. 

 

Recursion 

 

The filter’s calculated state variables and their associated uncertainties at the 

current time step, t, form the inputs to the calculations of the next time step, t + 

1. This is the recursive nature of the Kalman filter, and all the information required 

to perform the calculations in the next time step is contained within the estimates 

and uncertainties from the current time step. 

 

This feature makes the Kalman filter computationally very efficient, which is 

attractive from a practical software implementation viewpoint because the 

algorithm is concise and only requires input from the previous time step. 

 

The Kalman MLU method proposed here is termed an Extended Discrete Kalman 

filter in the literature [3]. The Extended Kalman filter is required to handle the non-

linear constraints, see Equations 10, 11 and 12, and its discrete nature is due to it 

being applied at discrete time intervals rather than continuously (though the time 

intervals are short in duration). 

 

3 THOUGHT EXPERIMENT USING A THEORETICAL METER 

 

3.1 Motivation 

 

Since orifice plate meters are not normally calibrated it is difficult to assess the 

performance of the algorithm against a reference device. Hence, in this initial 

theoretical example, the construction of a hypothetical meter in which a constant 

‘true’ mass flow rate is assigned, and hence known, provides such a reference 

device albeit theoretical. 
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The meter parameters are also assigned: pipe diameter (D), throat diameter (d), 

fluid density, flow coefficients, etc.  From this data, the associated ‘true’ values of 

the three differential pressures can be back calculated. The ‘true’ differential 

pressures can then be assigned realistic measurement uncertainties. That is, 

randomly generated, pseudo-measured differential pressure values can be 

produced consisting of the constant theoretically calculated DPs with superimposed 

random variations within their respective allotted uncertainty ranges.  These can 

be calculated for each time step. These vary around the ‘true’ value in accordance 

with their uncertainties. In effect this mimics the three sets of DP measurement 

data available at each time step encountered with a real meter in the field. 

 

In addition, to mimic real meters the theoretical set values for the meter geometry 

and fluid properties need realistic uncertainties assigned, which again can be used 

to generate pseudo-measured values, but these stay constant in time. 

 

This then is a representation of the data associated with a real meter measuring a 

constant mass flow rate. The advantage of this approach is that the true flow rate 

is known and can be compared against the predictions of flow produced using the 

traditional flow equations and the Kalman MLU based approach which will be 

derived from the differential pressures and meter properties corrupted by realistic 

noise. 

 

3.2 Meter Description 

 

This hypothetical example is based on a 4”, sch 40, 0.5 beta orifice meter with an 

inlet diameter of 0.102 m and throat diameter of 0.0508 m. A drawing of the 

hypothetical meter run is shown in Figure 2. Measured input variables, assigned 

relative uncertainties and associated absolute uncertainties are listed in Table 1. 

 

 

 

 

Figure 2 Hypothetical 4”, sch. 40 Orifice Meter Run 

 

Table 1 – Hypothetical 4”, 0.5 Beta Orifice DP Meter Variable and 

Parameter Uncertainties 

Variable / 

Parameter 

Unit ‘True’ Value Percent 

Uncertainty 

Absolute 

Uncertainty 

Mass Flow kg/s 3.2064   

DPt Pa 90,796 1.0% 908 

DPr Pa 23,931 1.0% 239 
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DPPPL Pa 66,866 1.0% 669 

d M 0.0508 0.05% 0.000025 

D m 0.102 0.25% 0.00026 

Y Dimensionless 0.991 0.30% 0.0030 

Cd Dimensionless 0.602 0.5% 0.003 

Kr Dimensionless 1.163 2.9% 0.017 

KPPL Dimensionless 0.177 1.2% 0.002 

ρ kg/m3 36.304 0.27% 0.098 

 

The Reader-Harris Gallagher equation [4] was used to calculate the discharge 

coefficient Cd and the same reference used to obtain the uncertainty in Cd. The 

values and uncertainties associated with Kr and KPPL were estimated based on Cd 

and the pressure loss ratio. 

 

One hundred time steps were then simulated in which pseudo-measured values of 

the three DPs were randomly generated in accordance with their uncertainties 

around the true values in the table above. Using this measurement data through 

time, the Kalman MLU algorithm was employed to obtain optimal estimates of the 

state variables (DPs and modified flow coefficients) at each time step. This also 

allowed the mass flow and its associated uncertainty to be calculated at each time 

step. 

 

In Figure 3, the mass flow rates calculated via these pseudo-measured DP values 

using both the Traditional equation (1) and the Kalman MLU approach are 

compared against the example’s constant ‘True’ value. 

 

 

 

Figure 3 True, Traditional and Kalman MLU mass flow rate 

versus time step 
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The flows are plotted against time steps. These time steps would typically be three 

second intervals (say) when grabs of data obtained from orifice meter are 

reconciled. One hundred time steps are shown for illustrative purposes. 

 

The example’s assigned ‘true’ mass flow remains constant. The values calculated 

using the Traditional flow equation with no Kalman filter MLU, represented by the 

orange line vary at each time step in accordance with the variation in DPt.  The 

magnitude of the deviations from the true value do not reduce with time. 

 

The flow rate prediction with the Kalman MLU applied, continuous purple line, also 

deviates from the true value but the deviations are lower than observed with the 

standard Traditional flow equation. Also, by visual inspection the Kalman MLU 

deviations reduce with time as the uncertainty in its flow estimates improve. 

 

The uncertainty in the mass flow rate calculated according to AGA 3 [9], referred 

to as the ‘Traditional’ uncertainty (mt ε% dashed orange line) is compared against 

the applied Kalman MLU uncertainty (Kalman MLU ε% purple line) in Figure 4: 

 

 

 
 

Figure 4 Traditional and Kalman MLU mass flow rate 

uncertainties versus time step 

 

Figure 4 shows an immediate reduction in mass flow rate uncertainty. This is the 

uncertainty reduction experienced using the steady state MLU as presented in [1]. 

The Kalman MLU uncertainty then further reduces with time as it accumulates more 

data and improves its estimate of the mass flow rate. In contrast the traditional 

flow uncertainty is static as the ‘True’ flow rate is not varying. 

 

The next three plots (Figure 5, Figure 6 and Figure 7) show the evolution of the 

Kalman MLU estimates of the modified flow coefficients with time. These plots are 
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one sample from a whole host of randomly generated simulations in which the 

starting value of the coefficients are randomly deviated in accordance with their 

uncertainties. 

 

 

Figure 5 Evolution of Kalman MLU Modified Coefficient Cd’ 

versus time step 

 

Figure 6 Evolution of Kalman MLU Modified Coefficient Kr’ 

versus time step 
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Figure 7 Evolution of Kalman MLU Modified Coefficient Kl’ 

versus time step 

These plots are presented to show the potential of the Kalman Filter MLU approach 

to self-tune the flow coefficients. It should be highlighted that the above plots are 

for one simulation of a meter and the results vary depending on the initial starting 

values. 

 

Similarly, the uncertainty in the three reconciled differential pressures also 

improves with time and this is illustrated in Figure 8, Figure 9 and Figure 10: 
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Figure 8 Evolution of Kalman MLU Reconciled Differential 

Pressure DPt versus time step 

 

 

Figure 9 Evolution of Kalman MLU Reconciled Differential 

Pressure DPr versus time step 
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Figure 10 Evolution of Kalman MLU Reconciled Differential 

Pressure DPPPl versus time step 

 

It is evident, by visual inspection, in all three plots that the reconciled differential 

pressures are closer to the true values than the measurements. The 95% 

uncertainty bands of the reconciled values are also plotted (grey lines) about the 

true value and this illustrates how the uncertainties in the reconciled DPs reduce 

with time. 

 

The above analysis demonstrates the theoretical feasibility of the Kalman MLU 

approach and its ability to reduce measurement uncertainty in comparison to 

standard meter system uncertainty calculation as shown by AGA 3 [9]. The 

reduction in uncertainty with time also illustrates that the Kalman MLU approach is 

an improvement on the steady state MLU. 

 

4 APPLICATION TO REAL DATA 

 

4.1 Introduction 

 

The chaos and noise of real-world data presents a more formidable test of the MLU 

Kalman filter than any theoretical data in assessing the feasibility and robustness 

of the method. 

 

The problem with real data is that we can never know the true values of all the 

variables that we are estimating, and the performance of the filter has to be 

assessed against more limited data and the use of engineering judgement. 

 

The data obtained in this example was from an orifice meter that was installed in 

a test facility and through which gas was flowed. The meter parameters and fluid 
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properties were known, and the three differential pressures measured and recorded 

at 3 second intervals. The test facility had a reference meter from which the 

instantaneous mass flow rates were recorded. 

 

The approach in Section 3 for the hypothetical meter was applied to this real data 

- the differences being that: 

 

• the ‘true’ constant mass flow rate is replaced by a mass flow rate obtained from 

a reference meter, with a significantly lower uncertainty (±0.5%) than the 

orifice meter under test (±0.75%), and a flow that is fluctuating in time; 

• the randomly generated DP measurement values, based on known true values 

and their uncertainties, are replaced by real DP measurements whose true 

values are not precisely known and whose uncertainties are only known to a 

nominal level. 

 

4.2 Meter Description 

 

This real example is based on a 6”, 0.6077 beta orifice meter with an inlet diameter 

of 0.1463 m and throat diameter of 0.0889 m (see Figure 11). Measured input 

variables, relative uncertainties and absolute uncertainties are listed in Table 2. 

 

 

 
 

Figure 11 6”, 0.6β Orifice meter at Test Facility with DPt, DPr, and DPPPL 

with Field Mount Flow Computer 
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Table 2 - 6”, 0.6 Beta Orifice DP Meter Variable and Parameter 

Uncertainties 

Variable / 

Parameter 

Unit Measured 

Value 

Percent 

Uncertainty 

Absolute 

Uncertainty 

Mass Flow* kg/s 11.299   

DPt* Pa 100,546 1.0% 1,005 

DPr* Pa 37,359 1.0% 374 

DPPPL* Pa 63,109 1.0% 631 

d m 0.0889 0.05% 0.000045 

D m 0.146 0.25% 0.00036 

Y Dimensionless 0.994 0.30% 0.0030 

Cd Dimensionless 0.599 0.5% 0.003 

Kr Dimensionless 0.982 1.8% 0.018 

KPPL Dimensionless 0.300 1.2% 0.003 

ρ kg/m3 39.807 0.27% 0.108 

* These are typical average values. 

 

In Figure 12, the mass flow rates calculated using the Traditional equation without 

the Kalman MLU approach and those calculated using the Kalman MLU approach 

are compared against the Reference meter values. 

 

 

Figure 12 Reference, Traditional and Kalman MLU mass flow 

rate versus time 

 

The Reference meter flow indicated by the black line, varies, but is more stable 

than either the Traditional or Kalman MLU values. The Kalman MLU values are on 

average closer to the reference meter and exhibit less variability than the 

Traditional flow. This is illustrated more clearly in Figure 13 in which the cumulative 

mass (mass flow integrated over time) difference with the Reference meter flow is 

plotted: 
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Figure 13 Traditional and Kalman MLU cumulative mass 

difference with Reference Meter versus time 

 

The ‘Traditional’ mass flow rate uncertainty (mt ε% dashed orange line) is 

compared against the Kalman MLU uncertainty (Kalman MLU ε% continuous purple 

line), in Figure 14: 
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Figure 14 Traditional and Kalman MLU mass flow rate 

uncertainties versus time step 

As observed in the theoretical example, this real data illustrates that the Kalman 

MLU uncertainty reduces with time as it accumulates more data and improves its 

estimate of the mass flow rate. In contrast the traditional flow uncertainty is 

relatively static as the Reference flow rate remains roughly constant. 

 

The next three plots (Figure 15, Figure 16 and Figure 17) show the evolution of the 

modified flow coefficients with time.  The true values are not known but these plots 

illustrate how the Kalman filter adjusts them to stable and consistent values. 
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Figure 15 Evolution of Kalman MLU Modified Coefficient Cd’ 

versus time step 

 

 

 

Figure 16 Evolution of Kalman MLU Modified Coefficient Kr’ 

versus time step 
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Figure 17 Evolution of Kalman MLU Modified Coefficient Kl’ 

versus time step 

 

5 CONCLUSIONS 

 

The DP meter operating principle, the associated flow rate calculation algorithms, 

and their output uncertainties are well established and have not been substantially 

developed or changed for many years.   

 

However, the advent of modern digital instrumentation offers far more detail on 

the nature of primary signals being read than was historically available.  This 

includes both a signal’s central tendency and its variation. Presently, any variation 

of a DP meter’s DP signal is usually lost as batches of signals over a time period 

are compressed into single mean values.  However, that signal variation can contain 

extra information regarding the state of the system.   

 

There is value, i.e. information, in the signal variation that is typically being 

ignored.  The Kalman MLU Intellectual Property is a method of extracting that extra 

information, and a way of further reducing the DP flow meter’s uncertainty. In 

effect, the Kalman MLU is a way of getting the DP flow meter system to ‘consider’ 

the meaning of the often ignored primary signal variations, a way of more deeply 

considering the state of the system, a way of creating a more ‘introspective flow 

meter’.  

 

Use of the Kalman MLU, is use of the often ignored primary signal variation, to 

improve both the DP flow meter’s primary flow prediction and that prediction’s 

uncertainty.  

 

 

 

 



North Sea Flow Measurement Workshop 
26-29 October 2020 

 
Technical Paper 

 

20 

6 REFERENCES 

 

[1] Allan Wilson and Phil Stockton (Accord ESL), Richard Steven, (DP 

Diagnostics), Data Reconciliation in Microcosm – Reducing DP Meter 

Uncertainty, Proceedings of the 37th International North Sea Flow 

Measurement Workshop, 22-25 October 2019 

 

[2] Shankar Narasimhan and Cornelius Jordache, Data Reconciliation and Gross 

Error Detection, An Intelligent Use of Process Data, published in 2000 by 

Gulf Publishing Company, Houston Texas, ISBN 0-88415-255-3. 

 

[3] Applied Optimal Estimation, Arthur Gelb, 1974, The Analytical Sciences 

Corporation, ISBN 0262570483. 

 

[4] International Standard Organisation Measurement of Fluid Flow by Means of 

Pressure Differential Devices, Inserted in circular cross-sections running full, 

no.  5167 2003. 

 

[5] Steven R., Diagnostic Methodologies for Generic Differential Pressure Flow 

Meters, North Sea Flow Measurement Workshop 2008, St.  Andrews, 

Scotland, UK. 

 

[6] Euain Drysdale, Phil Stockton, Could Allocation be Rocket Science? Using 

the Kalman Filter to Optimise Well Allocation Accuracy, Proceedings of the 

33rd International North Sea Flow Measurement Workshop, 20-23 October 

2015 

 

[7] Paul Zarchan; Howard Musoff (2000). Fundamentals of Kalman Filtering: A 

Practical Approach. American Institute of Aeronautics and Astronautics, 

Incorporated. 

 

[8] Ghysels, Eric; Marcellino, Massimiliano (2018). Applied Economic 

Forecasting using Time Series Methods. New York, NY: Oxford University 

Press. 

 

[9] AGA Report 3, Orifice Metering of Natural Gas and Other Related 

Hydrocarbon Fluids, 4th Edition, 2000 

 


