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1 INTRODUCTION 

 

The hydrocarbon production industry runs large complex pipework systems with 

numerous and varied equipment such as multiple valves, pressure and temperature 

sensors, flow meters etc.  However, due to the inherent uncertainty in each 

equipment setting and instrumentation output, the resulting massed raw data can 

be somewhat inconsistent.  As such industry applies ‘Data reconciliation’ techniques 

on the macro overall pipe system.  Such techniques involve mathematical 

procedures that combine a pipework’s multiple instrumentation readings, 

equipment settings, associated uncertainties, and governing physical laws, to 

automatically validate data and reconcile measurements such that the whole makes 

physical sense.  The technique can improve best estimates of not just measured 

system variables but even unmeasured variables.  The technique transforms raw 

and sometimes inconsistent data sets into a single consistent data set representing 

the most likely truth. 

 

In this paper, the technique often applied on this macro scale, is introduced to the 

micro scale of an individual meter system.  In the macro scale data reconciliation, 

the flow meter system is treated like any other instrument output, i.e. as a single 

node, a single point measurement.   There has not been any attempt to take a flow 

meter design’s sub-systems and develop mathematical techniques specifically 

tailored to the internal operation of that specific metering system for the purpose 

of improving that the individual flow meter’s performance, for all the advantages 

that would entail. 

 

In this paper mathematical techniques, based on data reconciliation, have been 

developed and applied specifically to flow metering systems to improve the 

performance of the flow meter, including fine adjustments to the stated flowrate 

prediction while lowering its uncertainty.  These techniques have been collectively 

described in this paper under the term: “Maximum likelihood uncertainty” (MLU). 

 

MLU requires multiple instrument readings, but this is achievable with: 

 

1. two meters in series making a metering system or, 

 

2. a hybrid meter that incorporates two or more metering principles in one 

metering system, or 

 

3. the use of standalone meters with either: 

a. suitable added instrumentation or, 

b. suitable existing diagnostic systems giving suitable secondary 

valuable information. 

 

Though the main focus of this paper is Differential Pressure (DP) meters, which are 

covered under 3. above, MLU can be applied to any system of measurements 

satsifying any of 1. to 3. In fact, the description of MLU is most easily understood 

using a flow measurement system comprising two independent meters in series 

and this example is used in Section 2 to describe the technique. The more 
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advanced, general method applied, (though not restricted to), DP meters is then 

developed in Section 3. 

 

As the description and application of the MLU method is developed, multiple real 

world examples will be presented using a mixture of field and calibration facility 

orifice, Venturi, and cone DP meter data sets along with USM data.  These examples 

show that the technique has significant implications regarding flow meter 

uncertainty and consequently reducing the associated financial risk exposure. 

 

2 MAXIMUM LIKELIHOOD UNCERTAINTY (MLU) TECHNIQUE – 

INDEPENDENT METERS 

 

2.1 MLU Description  

 

 
 

Fig. 1 Two Flow Meters in Series 
 

Consider two flow measuring devices installed in series which are measuring the 

same mass flowrate as depicted schematically in Fig. 1. 

 

Since both devices have inherent uncertainty, they will report different flowrates 

(only slightly different if the devices are of good quality).  The true mass flow is not 

known with absolute precision.  Each device, if functioning correctly, will report the 

flow within the bounds of its stated uncertainty in accordance with the probability 

upon which the uncertainty bounds are specified.  Typically, uncertainties are 

quoted at the 95% confidence level, which means that the reported mass flow will 

be within 1.96 standard deviations of the true value with 95% probability. 

 

Each device exhibits an uncertainty in its reported flow.  The two measuring devices 

may have different uncertainties.  The device with the lower uncertainty is more 

likely to be closer to the true value, but this is not guaranteed. However, for steady 

flow the physical law of conservation of mass states that the true mass flow passing 

through both meters in series is known to be the same with absolute certainty.   

 
If one flow meter’s flow prediction measured flow is assumed to be the most 

representative of the true flow (i.e. usually the flow meter with the lower 

uncertainty) and the other flow meter’s flow prediction is ignored, then information 

about the true flow is being discarded.  This additional information being ignored is 

in the form of the second measurement of the true flow, and the physical fact that 

the two meters are metering the same flowrate.   

 

The method of check metering employed in industry does just this.  Once the check 

meter is seen to agree with the primary meter within the combined meter 

uncertainties, often set as the root sum square value of the two meter 

uncertainties, the primary meter’s correct operation is seen as confirmed.  
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Presently, industry makes no more use of the check meter information, and simply 

uses the primary meter output with its stated uncertainty.  This is even true for 

paired reference flow meters in series at flow meter calibration facilities. 

 

This proposed method utilizes the information from both flow meters, and the 

knowledge that they are measuring the same true flow, in such a way as to 

generate a model where probability theory can be applied to produce a statistical 

maximum likelihood estimate of that true flow given the available data.  This 

statistical maximum likelihood estimate of that true flow is more likely to be closer 

to the true flowrate value than either of the two input flowrate predictions.  

Furthermore, this maximum likelihood estimate flowrate prediction also has a lower 

associated uncertainty than either of the two individual flowrate predictions.   

 

The method can be extended to include more than two flow measurement devices 

in series.  The method can even be extended to flow measurement devices in 

parallel as long as mass conservation relates their combined measured flows. 

 

Indeed, the method is not restricted to the conservation of mass flow (or volume 

flow for constant density) but can be extended to utilise other relevant laws of 

physics.   One example, which is exploited in this disclosure, is the rule of ‘the 

equivalence of measured pressure differentials’.   

 

The method termed ‘MLU’ is the combination of a system’s multiple instrumentation 

readings, associated uncertainties, governing physical laws, and mathematical 

techniques, to automatically validate data and reconcile measurements such that 

the whole makes physical sense.  The technique can improve best estimates of not 

just measured system variables but even unmeasured variables.  The technique 

transforms raw and sometimes inconsistent data sets into a single consistent data 

set representing the most likely truth.   

 

MLU techniques are typically used by the hydrocarbon production industry for 

product allocation in complex pipe networks owned by many parties or process 

plants where there are multiple independent measurements of distinct hydrocarbon 

streams.  This macro system can be used to validate measurements as being 

compatible with respect to uncertainties and the relevant constraints, or to detect 

gross instrumentation errors.  In this disclosure the technique often applied on this 

macro scale is introduced to the micro scale of flow meter systems.   

 

A simple theoretical example is now presented to illustrate the method of combining 

two independent flow measurements to derive a adjusted measurement with a 

reduced associated uncertainty. 

 

2.2 MLU – Mathematical Development for Two Independent Meters in 

Series 

 

Returning to the system with two independent flow meters in series both measuring 

the same mass flowrate as depicted schematically in Fig. 1.  These meters can be 

similar or dissimilar.  Each meter is independent of the other in terms of the inputs 

used to calculate the mass flow.   Denoting the first meter as meter 1, its mass 

flow prediction is denoted as  𝑚1̇ .  Denoting the second meter as meter 2, its mass 

flow prediction is denoted as 𝑚2̇ .  Each meter’s reported mass flow will have an 

uncertainty associated with it denoted by by 𝑈𝑚1
̇  and 𝑈𝑚2

̇  respectively.  These 

uncertainties are absolute and are related to the relative uncertainties 휀𝑚1̇  and 

휀𝑚2̇  by equations (1) and (2): 

 

𝑈𝑚1
̇ = 휀𝑚1̇ ∗ 𝑚1̇  (1) 
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𝑈𝑚2
̇ = 휀𝑚2̇ ∗ 𝑚2̇  (2) 

 

Both sets of uncertainties are expressed at some stated confidence level (usually 

95%) and follow normal distributions.  The probability density function below 

describes the probability of how the measured flow differs from the true flow 𝑚𝑡̇ : 

 

                    𝑃𝑑1(𝑚𝑡̇ ∣∣ 𝑚1̇ , 𝜎1 ) =
1

√2𝜋𝜎1
2
𝑒

−(
(𝑚𝑡̇ −𝑚1̇ )2

2𝜎1
2 )

 
(3) 

 

Where,  

 

𝑃𝑑1 Probability density for the 1st meter 

𝑚𝑡̇  True mass flow 

𝜎1 Standard deviation of the 1st meter mass flow 

 

The standard deviation is related to the 95% measurement uncertainty by: 

 

𝑈𝑚1
̇ = 1.96 ∗ 𝜎1 (4) 

 

A similar expression describes the probability density of the 2nd meter: 

 

𝑃𝑑2(𝑚𝑡̇ ∣∣ 𝑚2̇ , 𝜎2 ) =
1

√2𝜋𝜎2
2
𝑒

−(
(𝑚𝑡̇ −𝑚2̇ )2

2𝜎2
2 )

 
(5) 

  

The product of these two probability density functions describes the probability of 

how the true value differs from the two measured values. 

 

𝑃𝑑2( 𝑚𝑡̇ ∣∣ 𝑚2̇ , 𝜎2 )𝑃𝑑1( 𝑚𝑡̇ ∣∣ 𝑚1̇ , 𝜎1 ) =
1

√2𝜋𝜎2
2
𝑒

−(
(𝑚𝑡̇ −𝑚2̇ )2

2𝜎2
2 ) 1

√2𝜋𝜎1
2
𝑒

−(
(𝑚𝑡̇ −𝑚1̇ )2

2𝜎1
2 )

 
(6) 

This product of probabilities can be differentiated with respect to the true value and 

set to zero to find the most probable estimate of the true value given the two 

measured flows and their associated uncertainties.  This most probable estimate of 

the true flow is termed the reconciled mass flowrate  𝑚𝑟̇ .  It is more mathematically 

convenient to work with the negative of the natural logarithm of the probability 

densities.  Since the logarithm is a monotonic transformation, its maximum will 

correspond with that of the product of the probability densities (L): 

 

𝐿 = −ln(
1

√2𝜋𝜎2
2
𝑒

−(
(𝑚𝑡̇ −𝑚2̇ )2

2𝜎2
2 ) 1

√2𝜋𝜎1
2
𝑒

−(
(𝑚𝑡̇ −𝑚1̇ )2

2𝜎1
2 )

) 
(7) 

 

Therefore, 

 

𝐿 = −ln (
1

√2𝜋𝜎2
2

1

√2𝜋𝜎1
2
) + (

(𝑚𝑡̇ − 𝑚2̇ )
2

2𝜎2
2

) + (
(𝑚𝑡̇ − 𝑚1̇ )

2

2𝜎1
2

) 
(8) 

  
Differentiating: 

𝑑𝐿

𝑑𝑚𝑡̇
= (

(𝑚𝑡̇ − 𝑚2̇ )

𝜎2
2 ) + (

(𝑚𝑡̇ − 𝑚1̇ )

𝜎1
2 ) 

(9) 
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When this differential equals zero 𝑚𝑡̇  = 𝑚𝑟̇ , and rearranging in terms of 𝑚𝑟̇ : 

 

𝑚𝑟̇ =
𝜎1

2𝑚2̇ + 𝜎2
2𝑚1̇

𝜎2
2 + 𝜎1

2
 

(10) 

 

Or in terms of the uncertainties: 

 

𝑚𝑟̇ =
𝑈𝑚1

̇ 2
𝑚2̇ + 𝑈𝑚2

̇ 2
𝑚1̇

𝑈𝑚2
̇ 2

+ 𝑈𝑚1
̇ 2  

(11) 

 

The uncertainty in this reconciled flow (Uṁr) can also be determined using the 

Taylor Series Method (TSM) for the propagation of errors described in the “Guide 

to the Expression of Uncertainty in Measurement”, aka “the GUM” [6].  The 

sensitivity coefficients are given by: 

 

𝜕𝑚𝑟̇

𝜕𝑚2̇
=

𝑈𝑚1
̇ 2

𝑈𝑚2
̇ 2

+ 𝑈𝑚1
̇ 2 

(12) 

And,  

𝜕𝑚𝑟̇

𝜕𝑚1̇
=

𝑈𝑚2
̇ 2

𝑈𝑚2
̇ 2

+ 𝑈𝑚1
̇ 2 

(13) 

 

𝑈𝑚𝑟
̇ = ((

𝜕𝑚𝑟̇

𝜕𝑚1̇
)
2

𝑈𝑚1
̇ 2

+ (
𝜕𝑚𝑟̇

𝜕𝑚2̇
)
2

𝑈𝑚2
̇ 2

)

0.5

 
(14) 

 
Substituting for the partial differentials: 

 

𝑈𝑚𝑟
̇ = ((

𝑈𝑚2
̇ 2

𝑈𝑚2
̇ 2

+ 𝑈𝑚1
̇ 2)

2

𝑈𝑚1
̇ 2

+ (
𝑈𝑚1

̇ 2

𝑈𝑚2
̇ 2

+ 𝑈𝑚1
̇ 2)

2

𝑈𝑚2
̇ 2

)

0.5

 

(15) 

 

After simplification: 

 

𝑈𝑚𝑟
̇ =

𝑈𝑚2
̇ 𝑈𝑚1

̇

(𝑈𝑚2
̇ 2

+ 𝑈𝑚1
̇ 2

)
0.5 

(16) 

  
Inspection of this result reveals that the uncertainty in the reconciled flow is always 

less than either of the uncertainties in the individual meter measurements.  If the 

above is re-expressed as: 

𝑈𝑚𝑟
̇ = 𝑥 ∗  𝑈𝑚2

̇  (17) 

  
Where the factor x is given by: 

 

𝑥 =
𝑈𝑚1

̇

(𝑈𝑚2
̇ 2

+ 𝑈𝑚1
̇ 2

)
0.5 

(18) 

 

x is always less than 1, unless 𝑈𝑚2
̇ =0 or 𝑈𝑚1

̇ =∞, when x equals 1.   Hence, 𝑈𝑚𝑟
̇  

is always less than 𝑈𝑚2
̇ , for any real meter.  A similar argument proves that 𝑈𝑚𝑟

̇  

is always less than 𝑈𝑚1
̇ .  Hence, for any real meter,  𝑈𝑚𝑟

̇  is always less than either 

meter’s uncertainty.   
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The principle is that the higher uncertainty measurement does contain independent 

additional information, and even if it is less accurate than the lower uncertainty 

information, when the information is combined, the higher uncertainty additional 

information supplements the lower uncertainty information, which inherently 

reduces the overall measurement uncertainty. 

 

This is illustrated schematically in Fig. 2: 

 

  
 

Fig. 2 Probability Densities for MLU of Two Flow Meters in Series 

 
This is based on a nominal true flow of 100 units, being measured by two 

independent meters: 

 

• Meter 1 reports a flow of 100.5 units and has an uncertainty of ±1%,  

• Meter 2 reports a flow of 99 units and has an uncertainty of ±2%.  

 

The MLU flow is 100.2 units and its associated uncertainty is ±0.89%. The 

probability density described by the red normal curve can be seen by inspection 

that it is derived from the product of the probability densities of the two meters 

(denoted by blue and orange lines). 

 

2.3  Example Vortex plus Cone Meter in Series 

 

This example applies ther MLU technique to determine the reconciled mass flow 

rate and its uncertainty for a single-phase flow measured by two meters in series.  

In this example, independent flow rate measurements are made by a vortex meter 

and a cone meter in series (see Fig. 3). 

 

 
 

Fig. 3 Vortex Meter and Cone DP Meter Installed in Series 
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The vortex meter will report mass flow by 𝑚𝑣̇  and the cone meter a mass flow by 

denoted by 𝑚𝑐̇ .  Each meter’s reported mass flow will have an uncertainty 

associated with it denoted by 𝑈𝑚𝑣
̇  and 𝑈𝑚𝑐

̇  respectively. 

 

Substituting for Meter 1 and Meter 2 in equation (11), the reconciled mass flow 

rate is given by: 

 

𝑚𝑟̇ =
𝑈𝑚𝑣

̇ 2
𝑚𝑐̇ + 𝑈𝑚𝑐

̇ 2
𝑚𝑣̇

𝑈𝑚𝑐
̇ 2

+ 𝑈𝑚𝑣
̇ 2  

(19) 

 

And based on equation (16), the reconciled uncertainty is given by: 

 

𝑈𝑚𝑟
̇ =

𝑈𝑚𝑐
̇ 𝑈𝑚𝑣

̇

(𝑈𝑚𝑐
̇ 2

+ 𝑈𝑚𝑣
̇ 2

)
0.5 

(20) 

 

The results of applying this approach to a real vortex meter and cone meter 

operating in series are shown below.  The data is from a 6”, schedule 80, gas flow 

laboratory with the vortex meter upstream of the DP cone meter.  The meters were 

separated by a short spool piece.  The data consist of points at nominally 60 bar 

and 15 bar.  The standalone cone meter had a mass flow prediction uncertainty of 

±0.6%.  The standalone vortex meter had a mass flow prediction uncertainty of 

±0.75%.  After this method is applied the reconciled mass flowrate prediction 

uncertainty is reduced to ±0.47%, i.e. the combined metering system has a lower 

mass flowrate uncertainty than either individual meter. 

 

An example of the approach applied to a real cone meter and vortex meter 

operating in series is illustrated below. 

 

Table 1 - Vortex and Cone Meter in Series with Applied MLU 

 

 
 

The probability densities of the meter readings and MLU reconciled flow for data 

point 8 in Table 1 are presented in Fig. 4: 

 

Data Point Rel. Uncertainty=> 0.60% Rel. Uncertainty=> 0.75%

Measured Flow Abs. Uncertainty Measured Flow Abs. Uncertainty Flow Abs. Uncertainty Rel. Uncertainty

kg/s ±kg/s kg/s ±kg/s ±kg/s ±kg/s ±%

1 3.118 0.019 3.115 0.023 3.117 0.015 0.47%

2 7.807 0.047 7.777 0.058 7.796 0.037 0.47%

3 4.208 0.025 4.193 0.031 4.202 0.020 0.47%

4 4.223 0.025 4.203 0.032 4.215 0.020 0.47%

5 5.323 0.032 5.312 0.040 5.319 0.025 0.47%

6 5.326 0.032 5.317 0.040 5.323 0.025 0.47%

7 11.794 0.071 11.762 0.088 11.781 0.055 0.47%

8 20.142 0.121 20.226 0.152 20.175 0.095 0.47%

Cone Meter Vortex Meter Reconciled
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Fig. 4 Probability Densities for MLU applied to Cone and Vortex Flow 

Meters in Series 

 
Say this metering system was for natural gas custody transfer.  At 60 Bar and 200C, 

the standalone cone DP meter would predict a gas mass flow of 20.142 kg/s ± 

0.6% (see point 8 in  Table 1).  In terms of Million Standard Cubic Feet per Day 

(MMSCFD), this is a custody transfer result of 83.48 MSCFD ± 0.50 MMSCFD.  

Considering the typical gas calorific value of 1000 BTU/SCF, and a gas price of 

$2.50 per million BTU, this is an annual flow value of $76.18 million ± $457K.  The 

traditional method of metering the flow uses a single meter’s uncertainty value.  If 

the cone meter stood alone in the pipe this result would be used without any check 

meter verification.  If there were two meters in series for check metering the 

standard practice is to use the meter with the lower uncertainty for billing, i.e. in 

this example the cone meter at 0.6% uncertainty.  However, if this MLU technique 

is applied it is proven that the flow prediction and its associate uncertainty needs 

finely adjusted to 20.175 kg/s ±0.47% (see point 8 in Table 1).  The custody 

transfer metering result has shifted to 83.62 MMSCFD ± 0.39 MMSCFD, i.e. an 

annual flow value of $76.30 million ± $359K.  That is, the primary flowrate has 

been finely altered by +0.14 MMSCFD, i.e. a billing alteration of +$127.775K per 

annum, while the uncertainty in the flow metering system output has dropped by 

0.13% from  ± $457K to ± $359K per year, i.e. exposure to flow metering 

uncertainty is reduced by $98,000 per year.  

 

2.4  MLU Applied to Hybrid Meters 

 

The example in the previous section utilized the method for the case where there 

were two independent metering systems in series (see Fig. 3).  The method will 

work regardless of whether the two (or more) flow meters are similar or dissimilar 

design.  This example of two independent dissimilar flow meters in series is 

applicable in industry in several scenarios.  It would work with check metering 

(including when a buyer and seller have separate meters in series), and it will work 

with hybrid meter designs, such as the vortex and cone meter combination in Fig. 

5 (presented by Steven [4]). 
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Fig. 5 A Vortex Meter + Cone DP Hybrid Meter 
   

This is a specific example of a Boden [5] mass flow meter design.  Boden taught 

that cross-referencing of a density sensitive volume meter (e.g. a DP meter), and 

a density insensitive meter (e.g. a turbine, ultrasonic, or vortex meter) produces a 

density prediction.  Combing the density insensitive meter’s volume flowrate 

prediction with this density prediction produces a mass flowrate prediction.  The 

Boden concept is a mass meter design, i.e. a flow meter that can predict the mass 

flow without requiring an externally obtained fluid density input.  However, 

although Boden metering system designs (such as Fig. 5) consist of two flow meter 

designs in series, or two flow metering principles in one meter body, they are not 

in any way used to reduce the flow metering systems fluid flow prediction 

uncertainty. 

 

A hybrid meter is one where two different metering measurements are made by 

sharing at least some physical components.  Fig. 5 shows an example of a hybrid 

meter produced by two dissimilar meters. 

 

However, some ultrasonic meter (USM) systems have more than one ‘ultrasonic 

meter system’ in the same meter body.  This could be described as a hybrid of two 

distinct independent ultrasonic meter designs sharing the same upstream flow 

conditioner and the same meter body.  As ultrasonic meters are described by their 

number of paths, such designs are called by the two ultrasonic meter’s number of 

paths.  For example, a 4+1 ultrasonic metering system indicates one embedded 

four path ultrasonic metering system and one embedded one path ultrasonic 

metering system installed together in one meter body.  Some ultrasonic meter 

designs have ‘bounce paths’ where the transducer pair are not directly opposite 

from each other but send and receive signals by bouncing the ultrasonic wave off 

the wall.  This makes no difference to the application of this technique. 

 

 
Fig. 6 Schematic Sketch of a Four Path Plus One Bounce Path Ultrasonic 

Meter/s Design. 

 

The 4 path chordal design has four paths created by transducer pairs a & a’, b & 

b’, c & c’, d & d’.  This four path chordal design typically has its own dedicated flow 

computer (or ‘head’).  The 1 path design has a path created by transducer pairs x 

& x’.  This one path design typically has a separate dedicated flow computer (or 

‘head’).  That is the two ultrasonic metering systems are independent.  Ultrasonic 

meter manufacturers use such meter designs to give an extra level of system 
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redundancy, e.g. check metering, and to offer an extra diagnostic capability (e.g. 

the 1 path meter may be positioned in the vertical axis and can therefore be 

adversely affected by problems such as contamination or liquids at the base of the 

meter before the four path meter diagnostic system can see the problem).  There 

is no attempt by ultrasonic meter manufacturers to cross reference the two (or 

more) independent meters in order to reduce the overall system flowrate prediction 

uncertainty.  However, any such ultrasonic metering system with two such systems 

(e.g. 4+1, 4+2, 4+4 etc.) could be developed to utilize this uncertainty reduction 

method.   The next example shows the method being applied to 4+1 path ultrasonic 

meter data. 

 

2.5  Example 4 + 1 Path Ultrasonic Meter 

 

Consider the case of a 4+1 path ultrasonic meter.  There are various common path 

configurations, such as 4+1, 4+2, 4+4 etc.  The method discussed here works for 

all such ultrasonic meter configurations.  

 

The 4-path and 1-path measured flow rates are treated as being independent.  

Ultrasonic meters are used to determine the volume flow rate.  Ancillary 

calculations are applied to derive the fluid density from which a mass flow rate is 

then derived.  However, as the two volume meters are embedded in the same 

meter body at the same flow conditions the fluid density is the same for both meters 

and hence there is the same mass flow and the same volume flow past the two 

meters. The reconciliation calculations equations (11) and (16) apply in any 

situation where the same quantity is independently measured by different means.  

Thus, a reconciled volume or mass flow rate can be derived and its uncertainty 

calculated.  Equations (11) and (16) can then be applied to obtain a reconciled 

volume or mass flow rate. 

 

Table 2 - 4+1 Ultrasonic Meter with Applied MLU 

 USM 4-path USM 1-path MLU 

 Rel Uncert 

0.5% 

Rel Uncert 

0.6% 

Reconciled Reconciled Reconciled 

Data 
Point 

Measured 
Flow 

Abs. 
Uncert 

Measured 
Flow 

Abs. 
Uncert 

Flow Abs. 
Uncert 

Rel. 
Uncert 

 kg/s kg/s kg/s kg/s kg/s kg/s % 

1 5.321 0.027 5.327 0.032 5.323 0.020 0.38% 

2 4.708 0.024 4.713 0.028 4.710 0.018 0.38% 

3 4.163 0.021 4.143 0.025 4.155 0.016 0.38% 

4 3.582 0.018 3.583 0.021 3.582 0.014 0.38% 

5 2.972 0.015 2.975 0.018 2.973 0.011 0.38% 

6 2.366 0.012 2.368 0.014 2.367 0.009 0.38% 

7 1.767 0.009 1.769 0.011 1.768 0.007 0.38% 

8 1.154 0.006 1.155 0.007 1.154 0.004 0.38% 

 

The probability densities of the meter readings and MLU reconciled flow for data 

point 1 in Table 2 are presented in Fig. 7: 
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Fig. 7 Probability Densities for MLU applied to 4 + 1 Ultrasonic Flow 

Meter 

 
The results of applying this approach to a real 4+1 path USM are shown in Table 

2.  This data comes from an 8”, schedule 80 flow meter tested at a natural gas flow 

laboratory.  The data consist of points nominally at 15 Bar.  The calibrated 4 path 

and 1 path USM relative volume uncertainties were subsequently set (by 

consideration of the ISO 17089-1 ultrasonic meter standard uncertainty examples) 

as 0.5% and 0.6% respectively.  In this particular example the shift in mass 

flowrate prediction is marginal, but the method reduces the flowrate uncertainty 

from the 4-path ultrasonic meter’s 0.5% to 0.38%.   

 

The data in Table 2 is for a rather low pressure and as a consequence the mass 

flowrate is low and the financial value of the flow relatively modest.  However, the 

result is indicative of any 4+1 (or 4+2, 4+4 etc.) ultrasonic meter in that the 

flowrate prediction can be finely adjusted and the flowrate uncertainty can be 

significantly reduced.  For many higher value custody transfer flows the advantages 

of this can be significant.   

 

This example utilized the method for the case where the metering system 

inherently had two pre-existing independent but similar metering systems to 

compare.  However, most standalone meters do not have two such independent 

sub-system flowrate predictions as a standard commercial offering.   However, it is 

sometimes possible to add a supplemental system (or systems) to produce a 

second flowrate prediction.  The next example shows a case where a standard flow 

meter with no inherent suitable extra instrumentation is modified to produce a 

second flow meter system such that the method can be applied.  

 

2.6  Example Coriolis with DP Measurement 

 

Coriolis meters produce a single mass flowrate prediction.  Standard Coriolis meters 

have no second mass flow prediction in which to apply this method.  But a second 

mass flowrate prediction can be created.  The permanent pressure loss can be read 

across the Coriolis meter, see Fig. 8: 
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Fig. 8 Coriolis Meter with Added Permanent Pressure Loss Reading 

 

This permanent pressure loss is directly related to the fluid velocity, and therefore 

the mass flow.  The mass flowrate can therefore be calculated from this read 

permanent pressure loss DP.  This flow metering concept is fundamentally the same 

as that discussed in the DP meter diagnostic / validation section 3.2 below.   

Equation (24) is applicable for the permanent pressure loss across any pipe 

obstruction, DP meter and Coriolis meter inclusive.  Hence, reading the permanent 

pressure loss across the Coriolis meter, i.e. the differential pressure between 

pressure taps 1 and 3 (see Fig. 8), creates a second independent mass flowrate 

prediction.  Furthermore, some Coriolis meters are installed with a reduced bore 

assembly, see Fig. 8. In this scenario there is the option to read the differential 

pressure across the reduction in bore, i.e. the differential pressure between 

pressure taps 1 and 2, thereby effectively creating an upstream Venturi meter.    

 

Hence, say a Coriolis meter is calibrated to have a gas mass flowrate of 0.5%.   This 

is a typical Coriolis meter uncertainty.  The permanent pressure loss across a typical 

Coriolis meter is such that a calibrated permanent pressure loss Coriolis flow meter 

could have an uncertainty of 0.75%.  Carrying out the MLU technique produces a 

reconciled (finely adjusted) flowrate prediction, and reduces the uncertainty to 

0.42%.   

 

For the specific case of a reduced bore flow meter design there is always the option 

to read the three DPs across the three pressure taps.  This is in effect the same as 

the Venturi meter set up shown in Fig. 9 in section 3.2 below with the addition of 

there being a flow meter such as a Coriolis, ultrasonic or turbine meter etc. in the 

Venturi throat. 

 

Fig. 8 shows the example of a Coriolis / Venturi meter hybrid meter.  This would 

give three DP related flowrate predictions, to combine with the Coriolis meter flow 

prediction, but these DP meter predictions are not wholly independent of each 

other.  Indeed, this is the case for the standard Venturi meter (and all DP meters 

such as the orifice, nozzle, cone, wedge DP meter etc.) with the three DPs as shown 

in Fig. 8.  However, the above method of reducing uncertainty describes a linear 

system with one unknown and uncorrelated measurement uncertainties.  If 

uncertainties are correlated (as in Section 3) the method can be extended to 

account for these correlations according to the GUM.   This is now addressed and 

the MLU method is extended to include non-linear systems with multiple unknown 

variables with potentially correlated uncertainties. 
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3 MAXIMUM LIKELIHOOD UNCERTAINTY (MLU) TECHNIQUE – MULTIPLE 

DEPENDENT MEASUREMENTS 

 

3.1  DP Flow Meters with Multiple Dependent Measurements 

 

For differential pressure meters such as orifice, nozzle, Venturi, cone, and wedge 

DP meters (i.e. ISO 5167 Parts 2, 3, 4, 5, & 6 [1]) this technique can be applied if 

the system has multiple (two or more) DPs read. 

 

This section specifically discussed DP meter diagnostic / verification systems.  

However, the ‘Maximum Likelihood Uncertainty’ system can be applied to any DP 

meter with such read DPs.  This addition can be an add on to this diagnostic system,  

or it can be independent of the diagnostic system.  That is, if the diagnostic system 

is present, once the diagnostic system verifies the meter is operating correctly, the 

Maximum Likelihood Uncertainty’ system can then reduce the metering system’s 

uncertainty.  However, most flow meters are operated without diagnostic systems. 

Hence, the extra DP transmitter/s could be added to any DP meter without the 

diagnostics system, the meter can be assumed to be working correctly, and the 

Maximum Likelihood Uncertainty system will then reduce the metering systems 

flowrate prediction uncertainty.   

 

MLU involves the use of multiple instruments in conjunction with physical laws to 

reduce the metering system’s overall uncertainty.  For the specific case of a DP 

meter with three DPs (as shown in Fig. 9) the multiple instruments are reading 

different but related signals, i.e. the three DPs are all ‘dependent’ on the meter 

body’s pressure field.  In this document the general term ‘dependent’ is here 

defined as systems of flow rate predictions that share some, or all, of a common 

set of input variables.   Whereas a metering system with instrument readings which 

are dependent on each other is more complex than when they are independent, 

the fundamental principle remains the same. 

 

3.2  DP Meter Diagnostics / Validation System Recap 

 

Let us now consider this approach to DP meters with the ‘Prognosis’ validation 

system. 

 
 

 
Fig. 9 Venturi meter with instrumentation sketch and pressure field 

graph 

 

Steven 2008 [2] described a Differential Pressure (DP) meter diagnostic system 

that utilizes a third pressure tap downstream of the traditional DP meter. This 

allows the measurement of two or three DPs instead of the traditional single 

‘primary’ DP.  

 

Fig. 9 shows a sketch of a generic DP meter with three DP readings and the meter’s 

pressure field.  There is a third pressure tap (P3) downstream of the two primary 

(or ‘traditional’) pressure ports (P1 & P2).  This allows three DPs to be read, i.e. the 
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primary or ‘traditional’ DP (ΔPt), recovered DP (ΔPr) and permanent pressure loss 

DP (ΔPPPL).  

 

Each DP can be used to individually meter the flow rate. Hence, every DP meter 

with an added downstream pressure tap (P3) is potentially three flow meters in one 

body.  Inter-comparison of these flow rate predictions produces three diagnostic 

checks.  There are three read DP ratios, i.e., the ‘PLR’ (ΔPPPL/ΔPt), the PRR 

(ΔPr/ΔPt), the RPR (ΔPr/ΔPPPL).  DP meters have predictable reproducible DP ratios.  

Therefore, comparison of each read to expected DP ratio produces three diagnostic 

checks.  

 

These checks, i.e three flowrate comparisons, three DP ratio comparisons to known 

baselines, the DP sum, and a signal / parameter stability check, create a ‘diagnostic 

suite’ whose output creates a diagnostic pattern.  Pattern recognition allows the 

source of varous meter malfunctions to be predicted.  Rather than primary 

malfunction identification, once the other seven diagnostic checks have identified 

a problem, the eighth diagnostic is primarily used to aid pattern recognition.   

 

This DP meter validation system is specifically the use of a third downstream 

pressure tap, to facilitate the reading of two or three DPs, instead of the standard 

meter's single DP reading, such that the extra information can specifically be used 

to create a DP meter validation tool. The three flowrate predictions are in effect a 

check meter system.  The expansion and PPL meter flowrate predictions are only 

used to verify the primary meter, they are not used in anyway to finely adjust and 

lower the uncertainty of the overall metering system’s flowrate prediction. The 

system states if the primary meter is fully operational, or if it has malfunctioned.  

If it has malfunctioned it will give guidance via diagnostic pattern recognition on 

what the problem may be.  It does not in any way attempt to reduce the overall 

system flow rate prediction uncertainty. 

 

3.3 MLU – Mathematical Development for DP Meters with Multiple 

Dependent Measurements 

 

The method requires redundancy in the set of measurements.  For the case of a 

single DP meter with one differential pressure measurement there is just sufficient 

information to calculate the mass flow, (given other inputs such as discharge 

coefficient, dimensions, fluid density, etc.).  The mass flow is termed as simply 

observable in that there is only one value it can be given the available 

measurements.  If there are additional DP measurements associated with the 

meter, this allows more than one calculated mass flow to be obtained and the 

system exhibits redundancy. 

 

As in the independent meter case, the redundant information arising from three DP 

measurements allows a reconciled mass flow rate to be calculated.  Furthermore, 

these calculations enable the uncertainty in reconciled variables to be derived and 

in particular the mass flow rate uncertainty. 

 

It is assumed the DP meter has been demonstrated to be functioning correctly; by 

Prognosis or any other equivalent means such as gross error detection techniques 

([8], [9]).  The meter must be 'healthy' otherwise data reconciliation will 'smear' 

gross errors in the measured data over the reconciled results and distort the 

calculated uncertainties.   

 

Only single-phase flow is considered.  It may be possible to extend this method to 

include two-phase flow in the future. 

 

The principle behind the MLU approach is independent of DP meter type, because 

of the manner in which meters are operated.  Venturis and cone meters are 

calibrated, whereas orifice meters are generally uncalibrated and ISO 5167 defines 

empirical relationships used to calculate mass or volume flow rates from the 

recovered and PPL DPs.  The method is not limited to Venturi, Cone and Orifice 
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meters.  It can be applied generally to DP meters with redundant DP 

measurements. 

 

The following is one example of the more complex mathematics required for the 

case where constraints are nonlinear in the measured, calibrated and unmeasured 

variables. It is also suitable where the instrument readings are not wholly 

independent.  However, it is an example only, and the fundamental principle holds 

true if a different mathematical method was chosen. 

 

For any DP meter the first law of thermodynamics requires that within uncertainties 

the measured traditional (𝛥𝑃𝑡), recovered (𝛥𝑃𝑟), and permanent pressure loss 

(𝛥𝑃𝑃𝑃𝐿) differential pressures should satisfy: 

 

Δ𝑃𝑡 = Δ𝑃𝑟 + Δ𝑃𝑃𝑃𝐿 (21) 

 

To establish the principles of the data reconciliation technique let us assume we are 

dealing with a Venturi meter. 

 

From ISO-5167 [1] and Steven [2] the 'traditional', 'recovered' and 'permanent 

pressure loss' mass flow rates  𝑚𝑡̇ , 𝑚𝑟̇  and �̇�𝑃𝑃𝐿 are given by equations (22), (23) 

and (24):   

 

𝑚𝑡̇ = 𝑚𝑡̇ (𝑑, 𝐷, 𝑌, 𝐶𝑑 , 𝜌, Δ𝑃𝑡) = 𝐸𝐴𝑡𝑌𝐶𝑑(2𝜌Δ𝑃𝑡)
1/2 (22) 

 

𝑚𝑟̇ = 𝑚𝑟̇ (𝑑, 𝐷, 𝐾𝑟 , 𝜌, Δ𝑃𝑟) = 𝐸𝐴𝑡𝐾𝑟(2𝜌Δ𝑃𝑟)
1/2 (23) 

 

�̇�𝑃𝑃𝐿 = �̇�𝑃𝑃𝐿(𝐷, 𝐾𝑃𝑃𝐿 , 𝜌, Δ𝑃𝑃𝑃𝐿) = 𝐴𝐾𝑃𝑃𝐿(2𝜌Δ𝑃𝑃𝑃𝐿)
1/2 (24) 

 

Where 

• 𝐷 is the meter inlet diameter and the meter inlet area, A =
πD2

4
 

• 𝑑 is the meter throat diameter and the meter throat area, 𝐴𝑡 =
π𝑑2

4
 

• 𝐶𝑑 is the discharge coefficient  

• 𝐾𝑟 is the expansion coefficient  

• 𝐾𝑃𝑃𝐿 is the permanent pressure-loss coefficient  

• 𝑌 is the fluid's expansibility  

• ρ is the fluid's density  

 

The discharge, expansion and PPL coeffcients are normally calibrated at a test 

facility for a Venturi meter and in order to meet a client’s uncertainty requirements 

may be Reynolds number dependent. 

 

As usual, the meter beta ratio, β, and 'velocity of approach', 𝐸, are as defined in 

equations (25) and (26) respectively. 

 

𝛽 = √
𝐴𝑡

𝐴
 

(25) 

 

𝐸 =
1

√1 − 𝛽4
 

(26) 

 

Equations (27), (28), (29) and (30) therefore provide four constraints which a 

reconciled mass flow rate,  �̂̇�, and variables in these equations should satisfy. 
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Φ = �̂̇� − �̇�𝑡(�̂�, �̂�, �̂�, �̂�𝑑, �̂�, 𝛥�̂�𝑡) = 0 (27) 

 

Ξ = �̂̇� − �̇�𝑟(�̂�, �̂�, �̂�𝑟 , �̂�, 𝛥�̂�𝑟) = 0 (28) 

 

Ψ = �̂̇� − �̇�𝑃𝑃𝐿(�̂�, �̂�𝑃𝑃𝐿 , �̂�, 𝛥�̂�𝑃𝑃𝐿) = 0 (29) 

 

Ω = 𝛥�̂�𝑡 − 𝛥�̂�𝑟 − 𝛥�̂�𝑃𝑃𝐿 = 0 (30) 

 

Until now the three DP readings were treated separately giving three mass flow 

rates according to equations (22), (23) and (24).  By applying MLU, a single 

reconciled mass flow rate consistent with constraints (27), (28), (29) and (30) is 

now calculated.  Information from all DP readings is included by MLU in this single 

mass flow rate, which is more likely to be more representative of the true flow rate 

while at the same time having a lower uncertainty. 

 

Constraints (22), (23) and (24) are nonlinear and contain the unmeasured mass 

flow rate, �̂̇�.  In a previous paper  a weighted least-squares optimisation approach 

to data reconciliation with nonlinear constraints and all variables measured was 

applied to allocation on Maersk’s Global Producer III [10].  That paper utilized a 

data reconciliation algorithm for a system with unmeasured variables developed by 

Britt and Luecke in [3], and it is this algorithm applied here. 

 

The algorithm takes a vector x of measured or calibrated variables,  

 

𝑥 = [Δ𝑃𝑡 Δ𝑃𝑟 Δ𝑃𝑃𝑃𝐿 𝑌 𝐶𝑑 𝐾𝑟 𝐾𝑃𝑃𝐿 ρ] (31) 

 

and unmeasured variables, mass flow rate in this instance, 

 

𝑢 = [�̇�] (32) 

 

 and derives the corresponding reconciled variables: 

 

𝑥 = [Δ�̂�𝑡 Δ�̂�𝑟 Δ�̂�𝑃𝑃𝐿 �̂� �̂�𝑑 �̂�𝑟 �̂�𝑃𝑃𝐿 ρ̂] (33) 

 

and reconciled unmeasured mass flow rate, 

 

�̂� = [�̂̇�] (34) 

 

Analogous to the maximum likelihood approach described in section 2, the 

reconciled values are obtained by minimising the weighted sum: 

 

𝑆 = ∑(
�̂�𝑖 − 𝑥𝑖

σ𝑥𝑖

)

2

𝑖

 

(35) 

 

subject to constraints (27), (28), (29) and (30).  In equation (35) σ𝑥𝑖
 is the 

uncertainty in each of the measured variables.   

 

In the following analysis the uncertainties are derived from vendor product data 

sheets, or according to standard uncertainties quoted in ISO 5167, or from 

calibration results, depending on the variable. 

 

The calculations require the iterative solving of equations (36) and  (37) below until 

the differences between iterations in both the measured and unmeasured variables 

is less than some chosen threshold. 
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𝑢𝑖+1 = 𝑢𝑖 − (𝐽𝑢
𝑇(𝐽𝑥𝑉𝐽𝑥

𝑇)−1𝐽𝑢)−1𝐽𝑢
𝑇(𝐽𝑥𝑉𝐽𝑥

𝑇)−1(𝐽𝑥𝑥0 + 𝐽𝑥(𝑥𝑖 − 𝑥0)) (36) 

 

 

𝑥𝑖+1 = 𝑥0 − 𝑉𝐽𝑥
𝑇(𝐽𝑥𝑉𝐽𝑥

𝑇)−1(𝐽𝑥𝑥0 + 𝐽𝑢(𝑢𝑖 − 𝑢0) + 𝐽𝑥(𝑥𝑖 − 𝑥0)) (37) 

 

In equations (36) and  (37) V is the covariance matrix of measured variables: 
 

𝑉 = [

𝜎Δ𝑃𝑡

2 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝜎𝜌

2
] 

(38) 

 

and Jx and Ju are Jacobian matrices: 

 

 

𝐽𝑥 = 

[
 
 
 
 
 
 
 
 
∂Φ

∂ΔPt

∂Φ

∂ΔPr

∂Φ

∂ΔPPPL

∂Φ

∂Y

∂Φ

∂Cd

∂Φ

∂Kr

∂Φ

∂KPPL

∂Φ

∂ρ
∂Ξ

∂ΔPt

∂Ξ

∂ΔPr

∂Ξ

∂ΔPPPL

∂Ξ

∂Y

∂Ξ

∂Cd

∂Ξ

∂Kr

∂Ξ

∂KPPL

∂Ξ

∂ρ
∂Ψ

∂ΔPt

∂Ψ

∂ΔPr

∂Ψ

∂ΔPPPL

∂Ψ

∂Y

∂Ψ

∂Cd

∂Ψ

∂Kr

∂Ψ

∂KPPL

∂Ψ

∂ρ
∂Ω

∂ΔPt

∂Ω

∂ΔPr

∂Ω

∂ΔPPPL

∂Ω

∂Y

∂Ω

∂Cd

∂Ω

∂Kr

∂Ω

∂KPPL

∂Ω

∂ρ ]
 
 
 
 
 
 
 
 

 (39) 

 

𝐽𝑢 = 

[
 
 
 
 
 
 
 
 
∂Φ

∂�̇�
∂Ξ

∂�̇�
∂Ψ

∂�̇�
∂Ω

∂�̇�]
 
 
 
 
 
 
 
 

 (40) 

 

After evaluation of the partial differentials in equation (39), the Jacobian matrix Jx 

becomes: 

 



















−−

−−

−−−

−−−−

=

00000111

2//0002/00

2/0/0002/0

2/00//002/







PPLPPLtPPLPPL

rrtrr

tdtttt

x
mKmPm

mKmPm

mCmYmPm

J  (41) 

 

And the Jacobian matrix Ju in the unmeasured variables becomes: 

 

𝐽𝑢 = [

1
1
1
0

] (42) 

 

Measured values are used as inputs to x0 in the first iteration.  An initial estimate 

of the mass flow rate used in the first iteration, u0, can be set from any one, or any 

combination, of the traditional, recovered and PPL calculated mass flow rates, e.g. 

an arithmetic average or uncertainty weighted average. 
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The iterations stop when: 

 

∑|𝑢𝑖+1 − 𝑢𝑖|  ≤  𝛿 (43) 

 

And, 

 

∑|𝑥𝑖+1 − 𝑥𝑖|  ≤  휀 (44) 

 

The set of equations are solved using the following iterative scheme: 

 

1. Obtain the measured input data and enter into the vector x in equation (31); 

2. Estimate an initial value of ṁ and enter into (32); 

3. Obtain the uncertainties in the measured input data and populate the 

covariance matrix V (38); 

4. Calculate the entries in the Jacobian matrix Jx according to (41), using the 

entries in vector x (the entries in the Jacobian matrix Ju are constants in 

accordance with (42)); 

5. Obtain updated values of both the unmeasured and measured variables 

from (36) and (37) respectively; 

6. Compare the values of the differences between the updated values and 

those from the previous iteration for the unmeasured and measured 

variables and check for convergence using (43) and (44); 

7. If convergence not achieved then update vectors x and u with the updated 

values of the measured and unmeasured variables and return to 4, other 

wise the iteration stops; 

 

If convergence is achieved then the latest values of the measured and unmeasured 

variables are the reconciled values according to (33) and (34). 

 

Importantly, analogous to the examples in section 2, the uncertainty in the 

reconciled mass flow rate can be calculated from: 

 

σ𝑢 = (𝐽𝑢
𝑇(𝐽𝑥𝑉𝐽𝑥

𝑇)−1𝐽𝑢)−1 (45) 

 

3.4  Calibrated Cone DP Meter with Pressure Field DP Readings 

 

In this section we present the results of applying this method to a cone DP meter 

with three DP readings as shown in Fig. 10: 

 

 

 
 

Fig. 10 Cone DP Meter with instrumentation sketch and pressure field 

graph 
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As with the Venturi meter in Fig. 9 the three DPs can each be used to predict the 

flow (via equations (22), (23) and (24)) but as the DPs are related these three 

flowrate predictions are not independent. 

 

This example’s data set is from a 14” 0.56 beta cone DP meter calibrated at a 

natural gas calibration facility (see Fig. 11).  

 

 
 

Fig. 11 - 14” Cone DP Meter Under Test 

 

The meter had an inlet diameter of 0.337 m and cone diameter of 0.28 m. Cone 

meter geometry uncertainty is accounted for in the calibrated flow coefficient data. 

This standalone cone meter’s mass flowrate prediction uncertainty is 0.78% at the 

flow rate in this example.   

 

Measured input variables, relative uncertainties and absolute uncertainties are 

listed in Table 3. 

 

Table 3 - 14”, 0.56 Beta Cone DP Meter Variable and Parameter 

Uncertainties 

Measurement Unit Value Relative 

Uncertainty 

Absolute 

Uncertainty 

DPt Pa 2759 1.17% 32.3 

DPr Pa 948 0.86% 8.1 

DPPPL Pa 1774 1.82% 32.3 

Y Dimensionless 0.9996 0.004% 0.00004 

Cd Dimensionless 0.8514 0.50% 0.004257 

Kr Dimensionless 1.440 2.50% 0.0360 

KPPL Dimensionless 0.344 1.00% 0.00344 

Ρ kg/m3 33.6 0.27% 0.09 

 

These measurements comprise the inputs into the vector x in equation (31) and 

the covariance matrix, V, in equation (38).  Uncertainties are stated at the 95% 
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confidence level. The covariance matrix V is diagonal with entries given by the 

squares of the absolute uncertainties listed in Table 3. 

 

V= diag (1045, 66.2, 1045, 1.60E-09, 1.81E-05, 1.30E-03, 1.18E-05, 8.22E-03) 

 

The derived traditional, recovered and PPL mass flow rates calculated according to 

Equations (22), (23) and (24) are shown in Table 4 along with their arithmetic 

average.  The arithmetic average may be used as the initial estimate of the 

reconciled mass flow rate and input into vector u of equation (38).  (Alternative 

methods to calculate the iniitial eatimate of the mass flow rate for input into vector 

u could be used, such as an uncertainty weighted average mass flow rate, or simply 

choosing the traditional mass flow rate as it typically has the lowest uncertainty). 

 

Table 4 - 14”, 0.56 Beta Cone DP Meter Three Related Flowrate 

Predictions 

 

Mass Flow Rate Value (kg/s) 

mtrad 10.6135 

mexp 10.5263 

mPPL 10.5855 

Arithmetic Average 10.5751 

 

The iterative scheme described in section 3.3 was applied and the algorithm 

converged after 3 iterations using threchild values of δ = ε = 10-6.  The results are 

presented in Table 5: 

 

Table 5 – MLU Results for 14”, 0.56 Beta Cone DP Meter 

 

Measured 

Variable 

Initial Value Adjustment Reconciled Value  

DPt 2759.4650 20.1387 2739.3263 

DPr 948.1350 -1.9463 950.0813 

DPPPL 1774.7270 -14.5179 1789.2449 

Y 0.9996 -5.6E-08 0.9996 

Cd 0.8514 -0.00074 0.8521 

Kr 1.4400 -0.00640 1.4464 

KPPL 0.3441 0.00145 0.3426 

Ρ 33.5792 0 33.5792 

    

Unmeasured 

Variable 

Initial Value Adjustment Reconciled Value 

at end of iteration 

M 10.6135 7.63E-08 10.5839 

 

Since the method has converged the mass flow rate uncertainty may now be 

calculated.  It is calculated according to equation (45) which gives the variance of 

the mass flow rate var(m) = 6.12E-03.  The absolute uncertainty in mass flow rate 

is therefore σ_m = sqrt(var(m)) = 0.078 kg/s.  Thus, the relative uncertainty in 

reconciled mass flow rate is ε_m = 0.51%, compared to 0.59% relative uncertainty 

in the traditional mass flow rate. 

 
Fig. 12 shows the meter’s mass flow rate relative uncertainty calculated according 

to ISO 5167-5 for the calibration data set.  This is referred to as the ‘Traditional’ 

uncertainty.  Also shown is the ‘Reconciled’ mass flow rate uncertainty, calculated 

according to equation  (45).   
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Fig. 12 - 14” Cone DP Meter Traditional and Reconciled mass flow rate 

uncertainties versus mass flow rate 

 

 

At high flow rates / Reynold’s number, the traditional and reconciled mass flow 

rates are close, although as expected the reconciled flow rate uncertainty is slightly 

lower than the traditional flwo rate uncertainty.  Use of the additional DP 

measurements affects the mass flow rate uncertainty much more significantly at 

low flow rates/Re. 

 

The relative and abolute reduction in uncertainty obtained by MLU is plotted against 

flow rate in Fig. 13: 

 

 
 

Fig. 13 - 14” Cone DP Meter Relative and Absolute Reduction in the mass 

flow rate uncertainty 
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Furthermore, the gas amount billing has been finely adjusted.  The stand-alone 14” 

cone meter reads 10.613 kg/s at 0.78% relative uncertainty.  The combined system 

MLU technique calculates 10.584 kg/s at 0.64%.  That is the system has shown 

that the standalone cone meter is most probably over-reading the gas flow by i.e. 

0.029 kg/s, i.e. 2.51 tonnes of gas per day, or 914.5 tonnes of gas /annum.  This 

is a positive shift of 43.8 MMSCF per year (about $110,000 / per year at $2.5 / 

million BTU prices). Without the MLU technique this issue goes unchecked for the 

life of the meter, often many years. Note that this example shows a negative shift 

in flowrate prediction.  For all MLU techniques always reduce the flowrate prediction 

uncertainty, the flowrate prediction results for any given application can be positive 

or negative shifts.    

 

3.5   Uncalibrated Orifice DP Meter with Pressure Field DP Readings 

 

In this example, we consider an uncalibrated 4”, 0.5 beta orifice meter with an inlet 

diameter of 0.102 m and throat diameter of 0.0508 m.  The standalone uncertainty 

of the uncalibrated meter (based on AGA Report 3 [7]) is 0.79%.  For this example, 

as the orifice meter is not normally calibrated the inlet and throat diameters, D and 

d,  are also considered measured variables in the reconciliation. They are therefore 

required to be included in the vector of measurements, x, the Jacobian, Jx, and the 

covariance matrix, V. 

 

Measured input variables, relative uncertainties and absolute uncertainties are 

listed in Table 6. 

 

Table 6 - 4”, 0.5 Beta Orifice DP Meter Variable and Parameter 

Uncertainties 

Measurement Unit Value Percent 

Uncertainty 

Absolute 

Uncertainty 

DPt Pa 90059.66 1.00% 900.597 

DPr Pa 23751.81 1.00% 237.518 

DPPPL Pa 66282.69 1.00% 662.827 

D M 0.051 0.05% 0.000 

D M 0.102 0.25% 0.000 

Y Dimensionless 0.991 0.30% 0.003 

Cd Dimensionless 0.605 0.50% 0.003 

Kr Dimensionless 1.162 1.50% 0.017 

KPPL Dimensionless 0.178 1.00% 0.002 

Ρ kg/m3 36.304 0.27% 0.098 

 

 

These measurements comprise the inputs into the vector x in equation (31) and 

the covariance matrix, V, in equation (38).   

 

Uncertainties are stated at the 95% confidence level. The covariance matrix V is 

diagonal with entries given by the squares of the absolute uncertainties listed in 

Table 6: 

 
V= diag(811074, 56414, 439339, 6.5E-10, 6.5E-08, 9E-06, 9.2E-06, 3.04E-4, 

3.2E-06, 9.6E-03). 

 

The derived traditional, recovered and PPL mass flow rates calculated according to 

Equations (22), (23) and (24) are shown in Table 7 along with their arithmetic 

average. 

 

Table 7 - 4”, 0.5 Beta Orifice DP Meter Three Related Flowrate 

Predictions 

 

Mass Flow Rate Value (kg/s) 

mtrad 10.6135 
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mexp 10.5263 

mPPL 10.5855 

Arithmetic Average 10.5751 

 

The iterative scheme described in section 3.3 was applied and the algorithm 

converged; the results are presented in Table 5: 

 

Table 8 – MLU Results for 4”, 0.5 Beta Uncalibrated Orifice DP Meter 

 
Measured 

Variable 

Initial Value Adjustment Reconciled Value  

DPt 90059.66 38.4760 90021.1884 

DPr 23751.81 -23.1928 23775.0006 

DPPPL 66282.69 36.5002 66246.1878 

d 0.0508 -3.64E-07 0.0508 

D 0.1023 1.83E-05 0.1022 

Y 0.9914 4.63E-05 0.9913 

Cd 0.605 7.86E-05 0.6049 

Kr 1.162 -0.004860 1.1669 

KPPL 0.178 0.000241 0.1781 

ρ 36.304 0 36.3039 

  1.88E-07 Converged 

    

Unmeasured 

Variable 

Initial Value Adjustment Reconciled Value 

m 3.204 1.8E-12 3.2064 

 

Applying the Since the MLU method has converged the mass flow rate uncertainty 

may now be calculated.  It is calculated according to equation (45) which gives the 

variance of the mass flow rate var(m) = 3.6E-04.  The absolute uncertainty in mass 

flow rate is therefore  = sqrt(var(m)) = 0.019 kg/s.  Thus, the relative uncertainty 

in reconciled mass flow rate is  = 0.59%, compared to 0.79% relative uncertainty 

in the traditional mass flow rate. 

 
Fig. 14 shows the meter’s mass flow rate relative uncertainty calculated according 

to ISO 5167-5 for the calibration data set.  This is referred to as the ‘Traditional’ 

uncertainty.  Also shown is the ‘Reconciled’ mass flow rate uncertainty, calculated 

according to equation  (45).   
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Fig. 14 - 4” Uncalibrated Orifice DP Meter Traditional and Reconciled 

mass flow rate uncertainties versus mass flow rate 

 

There is a consistent and significant reduction in uncertainty at all flow rates / 

Reynold’s number, for the reconciled flow when compared to the traditional value. 

The relative and abolute reduction in uncertainty obtained by MLU is plotted against 

flow rate in Fig. 15: 

 

 
 

Fig. 15 - 14” Uncalibrated Orifice DP Meter Relative and Absolute 

Reduction in the mass flow rate uncertainty 

 

Furthermore, the gas amount billing has been finely adjusted.  The stand-alone 4” 

orifice meter reads 3.208 kg/s at 0.74%.  The combined system’s MLU technique 

calculates 3.206 kg/s at 0.497%.  That is the system has shown that the standalone 

cone meter is most probably over-reading the gas flow by i.e. 0.002 kg/s, i.e. 172.8 
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tonnes of gas per day, or 63.1 tonnes of gas /annum.  This is a positive shift of 

27.2 MMSCF per year (about $68,000 / per year at $2.5 / million BTU prices). 

Without the MLU technique this issue goes unchecked for the life of the meter, often 

many years.  Note that this example shows a positive shift, but MLU results of any 

given application can be positive or negative shifts in flowrate prediction. This 

example is for a small (i.e. 4”) meter.  The financial significance of this technology 

applied to larger meters is significantly greater  

 

The method is not limited to DP meters with three independent DP measurements, 

but applies to any meter with two or more measurements. 

 

4 CONCLUSIONS 

 

The patent pending MLU method in essence is the idea of utilizing macro scale 

pipework process ‘MLU’ techniques to the micro scale of individual flow metering 

systems.  Existing macro pipe network systems use MLU techniques to gauge the 

overall state of the entire process.  Here the flow meters in the network are not 

subject to any internal MLU techniques, and simply supply flowrate predictions as 

a data point. That data point input is assumed as correct and as accurate and 

reliable as is possible.  However, in this approach data analysis techniques are 

applied within individual metering systems with multiple data readings such that 

this metering systems flow rate prediction is improved. 

 

5 NOTATION 

 

 

A Meter inlet area , A =
πD2

4
 

𝐴𝑡 Meter throat area, 𝐴𝑡 =
π𝑑2

4
 

𝐶𝑑 Discharge coefficient 

𝑑 Meter throat diameter 

𝐷 Meter inlet diameter 

𝐸 ‘Velocity of Approach’ 

𝐾𝑟 Expansion coefficient 

𝐾𝑃𝑃𝐿 Permanent Pressure-Loss 

coefficient 

Jx Jacobian of measured 

variables 

Ju Jacobian of unmeasured 

variables 

L Log likelihood  

ṁ Flow rate  

Pd Probability density 

S Sum of squares 

u Vector of unmeasured 

variables 
Uṁ Absolute uncertainty in flow 

rate 

V Covariance matrix 

x Factor, vector of measured 

variables  

𝑌 Expansibility 

 

 
 

 

Greek 

β Meter beta-ratio 

 Threshold 

ΔP Differential pressure 

ε Threshold 

 

εṁ Relative uncertainty in flow 

rate  

ρ Density 

σ Standard deviation, absolute 

uncertainty 

Φ Constraint variable 

Ξ Constraint variable 

Ψ Constraint variable 

Ω Constraint variable 

 

Superscripts 

ˆ Reconciled 

 

Subscripts 

1 Meter 1, Pressure tap 1 

2 Meter 2, Pressure tap 2 

3 Pressure tap 3 

c Cone 

i Iteration number 

r Reconciled 

t True 

v Vortex 
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