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1 INTRODUCTION 
 
Measurement uncertainties and their estimation have been the subject of much discussion 
and analysis. However allocation uncertainties have not been so well explored – specifically 
the way in which the uncertainties in measurements propagate through the allocation 
process. 
 
The uncertainty of allocated quantities can be considered as a Field or partner’s exposure to 
random gains (and losses) in the allocation results and should be understood in order to 
reach a fair and equitable allocation. 
 
This paper describes methods of analytically calculating allocation uncertainties. It also 
highlights potential pitfalls and how to avoid them in typical calculations: for example, the 
uncertainty of a component mass flow, calculated as the product of total flow and mass 
component fraction, is not as straightforward as might at first be expected. This and other 
examples, which are presented as a series of case histories, are borne out of the authors’ 
experiences in analysing uncertainties in a wide variety of systems. 
 
Many of the pitfalls were revealed by comparing the results from the analytical approach with 
those generated using a stochastic Monte Carlo approach. The paper describes how a 
combination of the two approaches is perhaps the most effective in calculating allocation 
uncertainties

1
. It goes on to describe how the analytical approach provides a deeper 

understanding of the uncertainties when comparing different allocation schemes. This is 
developed to generate a more general uncertainty map or landscape on which Pro Rata, By 
Difference and Uncertainty Based Allocation methods are compared.  
 
In Section 2, the basic analytical and Monte Carlo methods to calculate and combine 
uncertainties are described and some useful results presented.  
 
In Section 3, several applications of the equations are applied to real world examples in the 
form of case studies. These highlight potential pitfalls and the requirement for a clear 
understanding of concepts such as: 
 

 independence of variables 

 covariance 

 difference between relative and absolute uncertainty. 
 
These examples also serve to illustrate the benefits of the authors’ preferred approach of 
attacking the calculations using both analytical and Monte Carlo techniques.  
 
Section 4, commences with a discussion which compares the Monte Carlo and analytical 
approaches. It goes on to present equations for the uncertainties associated with three 
methods of allocation: By Difference, Pro Rata (or proportional) and Uncertainty Based 
Allocation (UBA). These equations are presented in concise and useful forms. The power of 
the analytical method is then exploited to explore the landscape of the uncertainty for the 
three aforementioned methods of allocation to afford a deeper understanding of their 
comparative uncertainties. The results of the analysis are presented in simplified equations 
that trace the boundaries where one type of allocation has an equal uncertainty to another 

                                                           
1
  It is acknowledged that there are other methods of calculating and combining uncertainties, for 

example quadrature. However, this paper is borne out of the authors’ particular experiences and it is 

the combined use of analytical and Monte Carlo approaches that they have found to be beneficial. 
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and allows the ready determination of which is the better method of allocation from an 
uncertainty viewpoint. Many of the results are also illustrated graphically. 
 
Section 5 provides a series of guidelines, borne out of the authors’ experience, for the 
calculation of allocation uncertainty. 
 
Equations are presented throughout the main body of text, generally without derivation. This 
is to aid readability of the paper: where considered appropriate the derivations are presented 
in the Appendix in Section 8.  
 
2 CALCULATION OF UNCERTANTIES 
 

2.1 Guides and Standards 
 
In 1993, the Guide to the Expression of Uncertainty in Measurement [1], or GUM as it is 
commonly referred to, was published by the International Organization for Standardization 
(ISO) in association with six other international organizations

2
. The foreword to the GUM 

states that “In 1978, recognizing the lack of international consensus on the expression of 
uncertainty in measurement, the world’s highest authority in metrology, the Comite 
International des Poids et Mesures (CIPM), requested the Bureau International des Poids et 
Mesures (BIPM), to address the problem in conjunction with the national standards 
laboratories and to make a recommendation.” This resulted in the publication of the ISO 
Guide, which has been accepted as the de facto international standard for the expression of 
uncertainty in measurement. 
 
The approach in the GUM is based on the Taylor Series Method (TSM) to model the 
propagation of uncertainties, and the use of the term “analytical” with reference to uncertainty 
calculations denotes this TSM method. This is to distinguish that propagation approach from 
the Monte Carlo Method (MCM), which is described in a Supplement to the GUM [2]. 
 
This perhaps rather laboured introduction is presented to show that the calculation of the 
propagation of uncertainties has been considered by several august organisations and the 
methods developed rigorously. The methods presented in the GUM are utilised extensively, 
not only in the metering industry, e.g. ISO 5168 [3], but throughout the world of science and 
engineering. For example, Monte Carlo methods are routinely used in the analysis of data 
generated by particle accelerators such as CERN’s Large Hadron Collider which recently 
discovered a Higg’s-like particle. 
 
The purpose of this preamble is to illustrate that there are recognised, correct mathematical 
methods that can be used for the propagation of uncertainties. An exhaustive discussion of 
the various methods is presented in [4]. 
 
2.2 Analytical Uncertainties 
 
The TSM is described in the GUM. The basic equation for the uncertainty in a result y, which 
is a function of a number (N) of input variables (xi), is given by: 
 

 

2

1

2















 

 i

N

i

i
x

y
UxUy  (1) 

 
In fact this is the simplest form of the equation presented in the GUM. There are potentially 
additional terms which account for: 
 

                                                           
2
  Bureau International des Poids et Mesures (BIPM), International Electrotechnical Commission 

(IEC), International Federation of Clinical Chemistry (IFCC), International Union of Pure and 

Applied Chemistry (IUPAC), ), International Union of Pure and Applied Physics (IUPAP), 

International Organization of Legal Metrology (OIML). 
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 higher order partial derivatives which are required if the equation is highly non-linear 
– these higher order terms can usually be ignored  

 covariance terms to account for the case when the input quantities x i are correlated – 
these, as will be seen, cannot always be ignored. 

  
The equation above is in terms of absolute uncertainties Uy and Uxi; the relative uncertainty 
of y is calculated by dividing Uy by y to obtain εy. Often the relative uncertainty in an input 
variable xi will be given and the absolute uncertainty is obtained by multiplying εxi by x to 
obtain Uxi. 
 
When talking of measurements, generally these are assumed to be normally distributed, with 
95% of measurements lying within ±2 standard deviations of the average value as illustrated 
in Figure 1: 

 

 
Figure 1 – Normal Distribution Probability Distribution, Standard Deviation and Uncertainty 

 
The partial derivative term in Equation (1) is also referred to as the sensitivity coefficient. The 
sensitivity coefficient describes the impact that the individual input variable x i has on the result 
y. 
 
A useful result can be obtained for equations that involve only multiples and quotients of 
variables. In this instance the relative uncertainty of the result (y) is the root sum square of the 
input variables’ (xi) relative uncertainties. So for example, if: 
 

21 xxy *  (2) 

 
then the relative uncertainty in y is simply given by: 
 

 
2
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This specific form of the equation is derived from Equation (1) (see Section 8.1 of Appendix) 
and in fact works for any equations of the form: 
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...*** cba xxxky 321  (4) 

 
for which the relative uncertainty in y is calculated from: 
 

...***  2
3
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2 xcxbxay  (5) 

 
Here the powers a, b, c, etc can be negative representing variables in the denominator. So for 
example the molar density of a perfect gas is given by: 
 

RT

P
  (6) 

 
And its relative uncertainty is calculated from: 

 

  2222 11 TP  **  (7) 

 
(This assumes the uncertainty in the gas constant R is negligible). 
 
Or for the volume of a cylinder: 
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 (8) 

 

2222 12 LDV   (9) 

 

It should be noted that the constant, π, does not figure in the relative uncertainty equation and 

that the sensitivity coefficient for the diameter D, is 4 times that of the length L, because D is 
squared in the volume equation. 
 
Though this specific form of the uncertainty equations is useful it can ONLY be used for 
equations of the form presented in Equation (4) and should NOT be used for other equation 
forms: for example the equation for allocating By Difference is represented by: 
 

21 xxy   (10) 

 
The relative uncertainty in y, in this case is: 
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The analytical uncertainties for By Difference and various other allocation methods are 
presented in Section 4. 
 
2.3 Monte Carlo Uncertainties 
 
The Monte Carlo Method is a powerful tool for performing uncertainty analysis. The basic 
methodology is described below, but detailed descriptions can be found in [2] and [4]. Using 
the volume of the cylinder equation as an example: 
 

 The true values of D and L are assumed. 

 The estimates of the random uncertainty for D and L are obtained. 

 Appropriate probability distribution functions are assumed to describe the variation of 
the random uncertainties – usually these will be Gaussian (normal). 



30
th
 International North Sea Flow Measurement Workshop 

23 – 26 October 2012 
 

5 

 A random number generator is used to produce a value of the random error 
independently for each input variable which is consistent with the random uncertainty 
and probability distribution functions. 

 These random errors are applied to the true values to obtain “measured values” for D 
and L. 

 Using the “measured” D and L, the volume V is calculated. 
 
This process corresponds to running the simulation once. The process is repeated M (where 
M may be 1,000 or 100,000 or …, etc. depending on the problem) times to obtain a 
distribution of the output result V. The standard deviation and hence uncertainty can then be 
obtained for V from the distribution of the simulation results generated. The results of a typical 
Monte Carlo simulation are presented in Figure 2. 
 

 
Figure 2 – Monte Carlo Simulation Results with Normal Distribution Overlaid 

 
3 CASE STUDIES 
 

3.1 Introduction 
 

The following sections describe a series of case studies associated with the calculation of 
uncertainties in allocation systems. These are based on real world problems but the systems 
and data have been anonymised – though the data presented are representative of the real 
systems. 
 
These case studies are intended to describe the correct application of the propagation of error 
equations and highlight areas where pitfalls can be encountered. These studies also illustrate 
the power of the complementary use of analytical (TSM) and Monte Carlo (MCM) methods to 
cross check against each other. 
 

3.2 Offshore Gas Condensate System 
 
This example involves a mass allocation to Field Alpha based on wet gas flow measurements 
and Field Bravo is allocated By Difference. 
 
The basic process is illustrated in Figure 3: 
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Figure 3 – Offshore Gas Condensate Process Schematic 
 

Field Alpha’s allocated export gas (Gα) is calculated as the product of its measured inlet flow 

(Mα) multiplied by a process factor (Sα) to account for liquid drop out in the topsides process: 

 

 SMG *  (12) 

 

Since Alpha’s allocated gas is just the product of two terms, Equation (3) can be used to 
calculate its relative uncertainty as the square root of the sum of the squares of the relative 
uncertainties in Alpha’s metered inlet and process factor: 
 

22
  SMG  (13) 

 

Field Bravo’s gas (Gβ) is allocated By Difference between the measured total export gas 

(MG) and Alpha’s allocated gas (Gα): 
 

 GMGG  (14) 

 
Bravo’s allocated gas is just the difference between two terms and Equation (11) can be used 
to calculate its relative uncertainty: 
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The condensate was allocated to Alpha as metered inlet minus its allocated gas mass. 
 

 GMC  (16) 

 
And Bravo’s condensate as the difference between the total measured condensate and that 
allocated to Alpha: 

 

 CMCC  (17) 
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At first sight it may appear to be appropriate to calculate the uncertainty in Alpha’s allocated 

condensate using Equation (11), with sensitivity coefficients of 1 and -1 respectively for Mα 

and Gα: 

  

     
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




C

GM GM
C

2222
11 ****

 (18) 

 
Bravo’s condensate uncertainty is calculated in analogous fashion from: 
 

     
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 (19) 

 
Table 1 presents the results of the above analytical uncertainty calculations based on 
representative measured flows, process factors and their associated uncertainties: 
 

Table 1 – Offshore Gas Condensate Allocation System Analytical Uncertainties 
 
 

 
 
The condensate allocation uncertainties appear high. The calculations were checked using 
the same input data in a Monte Carlo simulation and the results are presented in Table 2: 
 

Table 2 – Offshore Gas Condensate Allocation System Monte Carlo Uncertainties 
 
 

 
 
There is good agreement with the analytical gas allocation uncertainties but the Monte Carlo 
analysis predicts the condensate uncertainties are roughly half the values determined above 
in the analytical treatment. In fact the calculation of the analytical uncertainty for the Alpha 
condensate is incorrect and this highlights a pitfall that must be avoided when calculating 
uncertainties. 
 
As discussed above (in Section 2.2), using Equation (1) to combine the uncertainties in the 
various quantities requires that each input variable in the equation is independent. If they 
aren’t then the covariance terms need to be accounted for. The equation for Alpha’s allocated 

condensate is just the difference between its metered inlet (Mα) and its allocated gas (Gα) – 

BUT these two terms are not independent since the allocated gas was calculated based on 
the metered inlet in Equation (16). In order to calculate Alpha’s condensate uncertainty 

Alpha Bravo Gas Export Condy Export

Inlet Flow M tonnes/d 1,000

Process Factor S 0.9

Export Flow M tonnes/d 2,000 500

Allocated Gas G tonnes/d 900 1,100

Allocated Condy C tonnes/d 100 400

Flow Uncert ε Rel % 5.0% 1.0% 1.0%

Process Factor Uncert εS Rel % 5.0%

Allocated Gas Uncert εG Rel % 7.1% 6.1%

Allocated Condy Uncert εC Rel % 80.9% 20.3%

Alpha Bravo

Allocated Gas Uncert εG Rel % 7.0% 6.0%

Allocated Condy Uncert εC Rel % 45.1% 11.4%
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correctly the equation must be expressed in terms of input variables that are independent of 
one another: 
 

  SMSMMC 1*  (20) 

 

Now calculating the sensitivity coefficients for Cα in terms of Mα and Sα: 
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Now Alpha’s allocated condensate relative uncertainty is given correctly by: 
 

     
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1 ****

 (23) 

 
Bravo’s allocated condensate uncertainty can still be calculated according to Equation (19) as 
the total measured condensate (MC) and Alpha’s allocated condensate (Cα) are independent 
of each other, though the uncertainty εCα requires updating in accordance with (Equation 23). 
The revised condensate uncertainties are presented in Table 3: 
 

Table 3 – Offshore Gas Condensate Allocation System Correct Analytical Uncertainties 
 

 
 
The corrected analytical and Monte Carlo uncertainties are now in excellent agreement. 
 
PITFALL:  Failure to recognise terms in an allocation equation that are dependent on one 

another particularly when utilising the results of one allocation step in a 
subsequent step. 

 
TIP:  When calculating the uncertainty, ensure that allocation equations are re-

expressed in terms of independent terms, preferably inputs to the allocation 
system. 

 
3.3 Mass Component Flows 
 
Consider a stream for which mass flow and composition are measured. Table 4 presents 
figures for a representative gas stream containing 10 components for illustrative purposes. 
Also shown is the relative uncertainty in the gas mass fractions and total flow. 
  

Alpha Bravo

Allocated Gas Uncert εG Rel % 7.1% 6.1%

Allocated Condy Uncert εC Rel % 45.3% 11.4%
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Table 4 – Gas Stream Flow and Composition 

 

 
 
 

To obtain the mass flow of any component, the flow and component mass fraction are simply 
multiplied together: 
 

CTC XMM *  (24) 

 
At first sight it might be expected that the uncertainty in MC can be obtained using the 
equation for combining the uncertainties in products (as given by equation (3)). The results 
obtained in this way are presented in Table 5, along with the equivalent uncertainties 
determined by Monte Carlo simulation: 
 

Table 5 – Gas Stream Flow and Composition 
 

 
 
The analytically determined relative uncertainty for all the component mass flows is the same 
because the same uncertainty was assumed for all components in this example. The Monte 
Carlo approach produces quite different uncertainties for the mass component flows, 
generally being slightly higher for the majority but significantly lower for the main component, 
methane (C1). 
 

Symbol Units Value Rel Uncert

Flow M tonnes/d 1,000 1.0%

Composition

N2 XN2 mass % 1.0% 5.0%

CO2 XCO2 mass % 3.0% 5.0%

C1 XC1 mass % 73.0% 5.0%

C2 XC2 mass % 12.0% 5.0%

C3 XC3 mass % 7.0% 5.0%

iC4 XiC4 mass % 2.0% 5.0%

nC4 XnC4 mass % 1.0% 5.0%

iC5 XiC5 mass % 0.5% 5.0%

nC5 XnC5 mass % 0.4% 5.0%

C6+ XC6+ mass % 0.1% 5.0%

Symbol Units Value

Component Mass Analytical Monte Carlo

N2 MN2 tonnes/d 10 5.1% 6.3%

CO2 MCO2 tonnes/d 30 5.1% 6.2%

C1 MC1 tonnes/d 730 5.1% 1.8%

C2 MC2 tonnes/d 120 5.1% 5.8%

C3 MC3 tonnes/d 70 5.1% 6.0%

iC4 MiC4 tonnes/d 20 5.1% 6.3%

nC4 MnC4 tonnes/d 10 5.1% 6.3%

iC5 MiC5 tonnes/d 5 5.1% 6.3%

nC5 MnC5 tonnes/d 4 5.1% 6.2%

C6+ MC6+ tonnes/d 1 5.1% 6.3%

Rel Uncert
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Once again why does the Monte Carlo simulation generate a different uncertainty, for this 
seemingly simple, almost trivial, calculation? The answer is revealed when the mechanics of 
performing the Monte Carlo simulation are examined in more detail. Table 6 shows the 
calculation steps associated with a single iteration of the Monte Carlo simulation: 
 

Table 6 – Gas Stream Flow and Composition 
 

 
 
 
The True Value column shows the original composition and flow. The Measured Value 
column shows the result of the random deviation applied to the original figures – in effect a 
single measurement - significantly the composition now does not perfectly sum to 100%. This 
is the key step, the composition is normalised to obtain the final values. The component mass 
flow is determined using the re-normalised component mass fractions. What this 
renormalisation step reveals is that a slight increase (or decrease) in one component has to 
be balanced by corresponding decreases (or increases) in other components so that the 
composition sums to 100%. The measured component mass fractions are not independent of 
each other but exhibit covariance and this must be accounted for in the analytical uncertainty 
calculations. 
 
As mentioned in Section 2.2, Equation (1), and hence (3), should be modified to include extra 
terms to account for covariance. The GUM [1] presents the modified equation as: 
 
 
 
 
 




 
















































1

1 1

2

1

2 2

N

i ji
j

N

ij

iji
i

N

i

i
x

y

x

y
UxUxr

x

y
UxUy ****** ,  (25) 

 
 
The additional covariance terms account for the inter-dependence of the input variables xi and 
xj, and these terms comprise: 
 

 the product of the uncertainties 

 the product of the sensitivity coefficients 

 the correlation coefficient ri,j which reflects the degree to which the values of xi and xj 
correlate with each other. A value of one indicates complete correlation; zero reflects 
no correlation, i.e independence; a value of less than one indicates that one variable 
decreases as the other increases. 

 

Mass Cpt

Units True Value Measured Value Normalised Result

Flow M tonnes/d 1,000 991 Mi

N2 XN2 mass % 1.0% 0.96% 0.94% 9.332

CO2 XCO2 mass % 3.0% 3.03% 2.99% 29.603

C1 XC1 mass % 73.0% 74.10% 72.98% 723.022

C2 XC2 mass % 12.0% 11.98% 11.80% 116.874

C3 XC3 mass % 7.0% 7.43% 7.31% 72.462

iC4 XiC4 mass % 2.0% 2.07% 2.04% 20.246

nC4 XnC4 mass % 1.0% 0.95% 0.94% 9.287

iC5 XiC5 mass % 0.5% 0.52% 0.51% 5.076

nC5 XnC5 mass % 0.4% 0.40% 0.40% 3.934

C6+ XC6+ mass % 0.1% 0.09% 0.09% 0.922

Total 100.00% 101.54% 100.00%

Covariance 
terms 
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The result of the product of the covariance terms can be negative as well as positive, 
meaning that it can reduce the uncertainty in y as well as increase it as was observed with 
the Monte Carlo uncertainties. 
 
An obstacle arises here in that, for all but the simplest cases, it is difficult to obtain the 
correlation coefficient ri,j. 
 
However, in this example the uncertainty can be calculated by re-expressing Equation (24) 
slightly differently in a form that naturally accounts for the inter-dependence of the 
component mass fractions, for example for component N2 (nitrogen): 

 


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Though the denominator summation term is equal to one its inclusion in calculating the 
uncertainty means that uncertainties and sensitivity coefficients for all components are now 
included in the uncertainty of the mass component flow. So for example the uncertainty of 
component N2 is given by: 
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 The results, which now agree with the Monte Carlo figures, are presented in Table 7: 
 

Table 7 – Mass Component Flow Corrected Uncertainties 
 

 
 
 
PITFALL:  Failure to recognise terms in an allocation equation that are dependent on one 

another. This dependence may not be explicit in the allocation equations 
themselves, for example the requirement for a composition to sum to 100%. 

 
TIP:  Ensure that implicit constraints in the allocation system equations are accounted 

for when calculating uncertainty. For example the constraint that requires a 
composition to sum to 100% resulting in covariance between the component mass 
(or molar) fractions. 

 
TRICK:  When calculating partial derivatives for sensitivity coefficients, re-express mass (or 

molar) fractions as the component fraction divided by the sum of the component 

Symbol Units Value

Component Mass Analytical Monte Carlo

N2 MN2 tonnes/d 10 6.27% 6.26%

CO2 MCO2 tonnes/d 30 6.19% 6.18%

C1 MC1 tonnes/d 730 1.83% 1.85%

C2 MC2 tonnes/d 120 5.82% 5.81%

C3 MC3 tonnes/d 70 6.03% 6.05%

iC4 MiC4 tonnes/d 20 6.23% 6.33%

nC4 MnC4 tonnes/d 10 6.27% 6.32%

iC5 MiC5 tonnes/d 5 6.29% 6.25%

nC5 MnC5 tonnes/d 4 6.30% 6.21%

C6+ MC6+ tonnes/d 1 6.31% 6.32%

Rel Uncert
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fractions. This will mean that all components will feature in the uncertainty 
calculation for each individual component and will account for their covariances. 

 
3.4 Multiphase Flow Meter Oil and Water Flows 
 
The type of Multiphase flow meter (MPFM) that is being discussed in this section is the type 
that infers the ratio of oil and water (and gas) by firing electromagnetic beams across the flow. 
 
Manufacturer’s of such MPFMs generally present the uncertainty of the liquid phases in terms 
of an overall liquid flow relative uncertainty and an absolute water liquid ratio uncertainty. 
Some representative values are presented in Table 8: 
 

Table 8 – Illustrative MPFM Uncertainties 
 

Liquid flow Relative uncertainty 5% 
WLR Absolute uncertainty 3% 

 
 
These are typical but deliberately not any particular manufacturer’s data. The important points 
to note are that: 
 

 the uncertainty in the individual oil and water liquid phases are not quoted 

 the liquid flow uncertainty is a relative value 

 the WLR uncertainty is an absolute value. 
 
The oil and water flows are calculated respectively from: 
 

 WLRMM LiqOil  1*  (28) 

And, 

WLRMM LiqWat *  (29) 

 
The relative uncertainty in the oil flow is given by: 

 

    

 WLR

eWLR WLRLiq

MOil 




1

1
22*

 (30) 

 
The relative uncertainty of the oil is not a function of the total liquid flow but dependent on the 
WLR. Note also the use of the relative liquid flow uncertainty and absolute WLR uncertainty 
in the above equation.  
 
What is also apparent on inspection of the above equation is that the relative uncertainty in 
the oil becomes very large as the WLR approaches 1. At first sight this may appear alarming 
but evaluation of the analogous absolute uncertainty as given by: 

 

    22
1 WLRLiqLiqM eWLRMe

Oil
 *  (31) 

 
reveals that the absolute uncertainty tends to some finite value. 
 
Based upon a total liquid flow of 1,000 Sm

3
/d and using the uncertainties in Table 7, the 

relative and absolute uncertainties of the oil flow are plotted as functions of WLR from 0 to 1 
in Figure 4: 
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Figure 4 – Uncertainty in MPFM Oil Flow as a Function of WLR 

 
The relative uncertainty rises asymptotically as the WLR approaches one. However, due to 
the falling oil flow the absolute uncertainty in fact falls. The relative uncertainty rises because 
the absolute uncertainty value represents a larger fraction of the oil flow.  
 
In fact the exposure, as represented by the uncertainty, in the oil flow actually falls as the 
WLR rises. This illustrates the requirement to consider both relative and calculated 
uncertainties in allocated or measured quantities. 
 
Similar trends are observed with the water uncertainty at low WLRs; the relative uncertainty is 
given by: 
 

   

WLR

eWLR WLRLiq

MWat

22



*

 (32) 

 
Note that the though the water flow is the product of MLiq and WLR, Equation (5) is not 
applicable here, as the uncertainty in the WLR, eWLR, is an absolute value. 
 
The absolute uncertainty is given by: 
 

   22
WLRLiqLiqM eWLRMe

Wat
  (33) 

 
 
The analogous relative and absolute uncertainties of the water flow are plotted in Figure 5: 
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Figure 5 – Uncertainty in MPFM Water Flow as a Function of WLR 
 
 
The high water relative uncertainty observed at low WLR occurs when oil dominates the liquid 
phase. 
 
This case study illustrates methods of combining absolute and relative uncertainties and the 
requirement to consider both relative and absolute uncertainties in the calculated quantities to 
understand the significance of the exposure in the calculated result. 
 
PITFALL:  Assuming that a constant relative uncertainty applies for the individual oil and 

water phase flow rates for an MPFM across the range of water cut. 
 
TIP:  Ensure that the individual oil and water flow uncertainties are calculated based on 

the liquid flow and WLR uncertainties - the uncertainties will vary with water cut. 
 
PITFALL:  Assuming that a high relative uncertainty in oil or water phase flow rates is 

necessarily a problem. 
 
TIP:  Determine both absolute and relative uncertainties for the oil and water flow rates 

as a high relative uncertainty in flow may be a small absolute quantity. 
 
 
4 ALLOCATION APPROACH ANALYSES 
 
4.1 Analytical versus Monte Carlo? 
 
At this point the question arises, why should the analytical uncertainty be calculated at all 
when the Monte Carlo approach seems to provide the correct answer whilst naturally 
accounting for covariances, etc?  
 
Each Monte Carlo simulation provides a only snap shot of the uncertainty for one particular 
set of data, i.e. one set of flows, uncertainties, etc. With each simulation run consisting of 
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many thousands (or even millions) of iterations, the time taken to build up a picture over a 
range of flows in an allocation system may be significant

3
. 

 
The analytical approach provides equations that describe the uncertainty over a range of 
flows almost effortlessly. This also allows various methods of allocation to be compared and 
gain a deeper understanding of the relative merits of each approach over the full range of 
flows.

4
 

 
In the authors’ experience the combined use of both approaches has proved to be 
advantageous in calculating and assessing the uncertainties associated with allocation 
methodologies. 
 
In the following sections three main methods of allocation are compared from an uncertainty 
viewpoint. The simple example allocation system presented in Section 4.2 is used throughout 
the comparison exercise. 
 
4.2 Pro Rata or Proportional Allocation 
 

Consider a system where two fields are produced through a process and their commingled 
export production is measured. This is allocated to the fields in proportion to their individual 
measured or estimated production at the export point. The system is presented schematically 
in Figure 6: 
 

 
 

Figure 6 – Simple Process Schematic 
 

The quantities allocated to A and B could be oil, gas, water, etc. The estimated production at 
the export point PA and PB may be equal to direct measurements of A and B as given by MA 
and MB, or based on MA and MB and some factor to account for processing. MA and/or MB 
maybe continuous measurements or based on well tests. 
 
However PA and PB are determined it is assumed that they provide an estimate of the flow 
from each Field at the measurement point and that their uncertainties are available or have 
been calculated appropriately. In the ensuing discussion, the uncertainty in these quantities 
will be referred to as their measurement uncertainties. Also the uncertainty in the commingled 
export flow measurement, M, is known. 
 
Allocated quantities employing the proportional method are given by: 
 















BA

A
A

PP

P
MA

 (34) 
and, 

                                                           

3  For example to build the three dimensional surface plots presented in Figure 17 and Figure 18, each 

consisting of approaching 1000 data points, would take over 7 hours to generate on the authors’ 

spreadsheet used to perform the Monte Carlo simulations – each simulation consisting of 10,000 

iterations. 

4  In complex systems, the equations may be such that Monte Carlo simulation is the only practicable 

approach for calculating uncertainties. 

Process

MAField A

Field B

M Commingled Export

MB

PA 

PB 
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













BA

B
B

PP

P
MA

 (35)
  

The relative uncertainties in the allocated quantities, AA and AB, have been calculated using 
analytical approach and are given by

5
: 

 

   2222 1 BPAPMAA x ,,,   (36) 

 

 2222
BPAPMBA x ,,,   (37) 

 
The relative uncertainties are functions of the relative uncertainties in the input quantities and 
x, which is the fraction Field A comprises of the total flow: 
 

 















BA

A

PP

P
x  (38) 

 















BA

B

PP

P
x)(1  (39) 

 
Assuming some values of the uncertainties for illustrative purposes: 
 

 Commingled measurement, εM = 1% 

 Field A measurement, εP,A = 5% 

 Field B measurement, εP,B = 10% 

 
Substituting these values into Equations (36) and (37), Field A and B’s allocation uncertainty 
can be plotted as a function of x as shown in Figure 7: 
 

 
 

Figure 7 – Pro Rata Allocation Relative Uncertainty 

                                                           
5
  The derivation is presented in Section 8.2 of the Appendix. 
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The Fields’ allocation uncertainties are mirror images of one another as x increases from zero 
to one. The relative allocation uncertainty for Field A decreases as it occupies a larger share 
of the flow (increasing x) to a minimum value of 1% - this is determined by the export 
measurement uncertainty.  
 
An important point to note is that though Field A has a better quality meter than Field B its 
allocation uncertainty is exactly the same as Field B’s when they occupy the same fraction of 
the total flow. Reducing the uncertainty of any of the meters benefits the system as a whole 
but not any field specifically. Also the equations indicate that improving the uncertainty in the 
measurement with the largest uncertainty provides the largest benefit for the system as a 
whole. 
 
The analogous plot for the absolute uncertainty is presented in Figure 8, based on a nominal 
combined flow of 1,000 – appropriate units are arbitrary and could be tonnes/d, kg/h, etc. 
 
 

 
 

Figure 8 – Pro Rata Allocation Absolute Uncertainty 
 
This shows that as x falls, the absolute uncertainty for Field A falls despite its relative 
uncertainty rising. 
 
In order to provide more of an overview of the uncertainty a three dimensional plot of Field A’s 
relative allocation uncertainty is presented in Figure 9: 
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Figure 9 – Pro Rata Relative Allocation Uncertainty – Field A 
 
The orange surface is Field A’s relative allocation uncertainty plotted against the vertical axis 
(AA Uncertainty (%)). The fraction Field A comprises (X) is plotted on the horizontal axis right 

to left, and the uncertainty in Field A’s production, εP,A, (from 0% to 20%) is plotted on the 

horizontal axis left to right. 
 
Also shown by the black dots is the locus of Field A’s allocation uncertainty when its 
measurement uncertainty is 5% corresponding with the plot in Figure 7. 
 
 
4.3 By Difference Method 
 
When employing the By Difference approach, the allocated quantities are given by: 
 

AA PA   (40)

  
 
for Field A and for Field B by difference, 
 

AB PMA   (41)

  
(The system in this example is Field B allocated By Difference. Equally Field A could be 
allocated By Difference, but the analysis is basically the same). 
 
The associated relative uncertainties are given by, for A: 
 

APAA ,,   (42) 

 
And, similarly for AB: 
 

 x

x APM

BA





1

222
,

,  (43) 

Field A 

Allocation 

Uncertainty 

AA (%) 

Field A 

Fraction 

X (%) 

Field A Measurement 

Uncertainty (%) 
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Using the uncertainties presented in Section 4.2 the relative allocation and absolute 
uncertainties for both fields are presented in Figure 10 and Figure 11 respectively: 

 
 

 
 

Figure 10 – By Difference Allocation Relative Uncertainty 
 

 

 

 
 

Figure 11 – By Difference Allocation Absolute Uncertainty 
 

Perhaps the most salient feature of the above figures is the rise in Field B’s allocation 
uncertainty as its flow relative to Field A declines. This occurs with its absolute uncertainty, 
which when combined with its reducing flow, results in an asymptotic rise in its relative 
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uncertainty. This illustrates the classic problem of allocating the minor producing field By 
Difference. 
 
Conversely, also apparent when Field B is a high proportion of the flow, is that the allocation 
uncertainty for both Field A and B is lower than the Pro Rata approach. Using the analytical 
uncertainty equations the point at which this cross over occurs can be calculated. For Field A, 
this is given by: 
 

1

1
2

22
















































B

A

B

M

B

A

A  (44) 

 

If x is less than ψA then By Difference allocation provides a lower uncertainty, if greater, then 

Pro Rata is better for Field A. 
 
Interestingly the cross over point for Field B ψB is not the same and in fact requires the 

solution of the following cubic equation: 
 

  02112

222

23 




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





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
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












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











































B

M

B

M
B

B

A
BB  (45) 

 
This equation can be solved iteratively using direct substitution: assume an initial value for 

ψ’B, say 0.5 and recalculate ψB from: 
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B
B

'

'
 (46) 

 

Then update ψ’B to be equal to ψB as calculated by Equation (46) and iterate until 

convergence is achieved. 
 

ψA and ψB are functions only of the uncertainties of the Export and Field A and B 

measurements. Using the uncertainties in the example above for the Export and Field B 
measurements, the operating regimes where Pro Rata and By Difference are preferred in 
terms of lowest uncertainty can be plotted as a function of Field A measurement uncertainty 

εP,A as shown in Figure 12. 
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Figure 12 – Pro Rata versus By Difference Uncertainty Map 
 
There is a small zone between the ψA and ψB lines where Pro Rata produces a lower 

uncertainty for Field B and By Difference is preferred for A. The size of this zone increases as 
the product meter uncertainty increases and disappears altogether when the product 
measurement uncertainty is zero. 
 
4.4 Uncertainty Based Allocation Method 
 
Uncertainty Based Allocation (UBA) utilises the uncertainties in the measurements in the 

allocation equations. The method calculates the imbalance (Δ) which is the difference 

between the export and sum of the Field measurements: 
 

BA PPM   (47) 

 
and allocates this between the fields in proportion to the square of the absolute uncertainties 
in their measurements, for example for Field A:  
 


















22

2

BA

A
A

ee

e
 (48) 

 
This is then added to their measurement PA.  
 

By defining θ as:  

 

  2222

22

22

2

1 BA

A

BA

A

xx

x

ee

e







  (49) 

 
The allocated quantities employing the UBA method are given by: 
 

 *AA PA  (50) 

 

   *1BB PA  (51) 
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The derivation of the Uncertainty Based Allocation approach has been discussed elsewhere 
[5], [6], [7] and is based on recognised mathematical techniques. The precise methodology 
discussed here is that developed in [7]. 
 
The method was developed to overcome the shortcomings in the Pro Rata and By Difference 
methods. Greater significance is placed on measurements from fields with better metering 
(lower uncertainty); accordingly their allocated quantities are closer to their measurements 
than less accurately metered fields. This mitigates the impact of any poorer quality 
measurements associated with the other field(s) in the system as observed in the Pro Rata 
approach. By incorporating all measurements it also avoids the high allocation uncertainties 
encountered with the By Difference method when the By Difference field is the minor 
producer in the system.  
 
The relative uncertainty in Field A’s allocation is given by: 
 

   

x

xx BPAPM

AA

22222222 11 ,,
,


  (52) 

 
And similarly for Field B: 
    
 

     

 x

xx BPAPM

BA





1

11 2222222
,,

,  (53) 

 
 
Using the uncertainties presented in Section 4.2 the relative allocation and absolute 
uncertainties for both fields are presented in Figure 10 and Figure 11 respectively: 

 
 

 
 

Figure 13 – UBA Relative Uncertainty 
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Figure 14 – UBA Absolute Uncertainty 
 
Comparison with the analogous figures for the Pro Rata and By Difference uncertainty plots 
illustrate that the UBA method generally produces lower allocation uncertainties for both 
Fields across the full range of relative flows. 
 
However, at first sight this might not appear a fair comparison as it appears that the 
uncertainty in the uncertainties themselves (εA, εB and εM) in the UBA equation has not been 

accounted for. However, perhaps surprisingly, the sensitivity coefficients for these terms are 
almost zero and the allocation uncertainties are basically unaffected by the uncertainty in the 
uncertainties. This is demonstrated mathematically in Section 8.4 of the Appendix and has 
also been proven using Monte Carlo simulation. 
 
Using the data in the above example, the allocation uncertainties for all three methods of 
allocation are compared in Figure 15 for Field A and Figure 16 for Field B: 
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Figure 15 – Comparison of Relative Allocation Uncertainties for Field A 
 

 

 
 

 

Figure 16 – Comparison of Relative Allocation Uncertainties for Field B 
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As can be observed the Uncertainty Based allocation produces allocation uncertainties that 
are for practical purposes better than or equal to those for either of the other methods for both 
fields. 
 
In order to provide more of an overview of the uncertainty a three dimensional plot of Field A’s 
relative allocation uncertainty for all three methods is presented in Figure 17: 
 
 

 
 

Figure 17 – Comparison of Relative Uncertainties for Field A – 3D Surface Plot 
 
The height of the surfaces represents Field A’s relative allocation uncertainty plotted against 
the vertical axis (AA Uncertainty (%)). The fraction Field A comprises (X) is plotted on the 

horizontal axis right to left, and the uncertainty in Field A’s measurement, εP,A, (from 0% to 

20%) is plotted on the horizontal axis left to right. 
 
Similarly for Field B: 
 

Field A 

Allocation 

Uncertainty 

(%) 

Field A 

Fraction (X) 

Field A 

Measurement  

Uncertainty (%) 



30
th
 International North Sea Flow Measurement Workshop 

23 – 26 October 2012 
 

26 

 
 
 

Figure 18 – Comparison of Relative Uncertainties for Field A – 3D Surface Plot 
 
 
 
5 CONCLUSIONS 
 
The following conclusions are expressed as a series of guidelines for the calculation of 
allocation uncertainties. These are not intended to be definitive but are borne out of the 
authors’ experience in calculating allocation uncertainties for a range of systems and 
applications. 
 

 Use analytical (TSM) and Monte Carlo (MCM) methods to cross check against each 
other when calculating allocation uncertainties. 

 

 Identify any terms in an allocation equation which are dependent on one another 
particularly when utilising the results of one allocation step in a subsequent step. 

 

 When calculating the uncertainty, ensure that allocation equations are re-expressed 
in terms of independent terms, preferably inputs to the allocation system. 

 

 Dependencies may not be explicit in the allocation equations themselves, for example 
the requirement for a composition to sum to 100% means that component mass (and 
molar) fractions are covariant, and this must be account for when calculating 
uncertainties. 
 

 The covariance in mass (or molar) fractions can be accounted for by re-expressing 
the relevant equation with the sum of the component fractions on the denominator.  
 

 For MPFMs it cannot be assumed that a constant relative uncertainty applies for the 
individual oil and water phase flow rates across a range of water cuts. 
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 When calculating allocation uncertainties it is important to determine both relative and 
absolute uncertainties. For example, with MPFMs, high relative uncertainties in oil 
phase flow rates can be encountered at high water cuts - this is not necessarily a 
problem if the associated absolute uncertainty is low. 
 

 Use the analytical method when comparing uncertainties associated with different 
allocation approaches, (Pro Rata, By Difference, UBA). The analytical approach 
allows a complete picture of the comparative allocation uncertainties over the full 
range of flows and measurement uncertainties to be generated. This in turn allows 
the exposure to over- or under allocation to be assessed in any cost benefit analysis 
which may influence measurement equipment and allocation scheme selection.  
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6 NOTATION AND ABBREVIATIONS 
 
a,b,c Exponent or power 
A Allocated quantity or Field A 

identifier 
B Field B identifier 
c  Component identifier 
D Diameter 
e Absolute uncertainty 
G Condensate quantity or flow or 

identifier 
G Gas quantity or flow or identifier 
GUM Guide to Uncertainty in 

Measurement [1] 
i Component or input identifier 
j Component identifier 
k Constant 
L Length 
Liq Combined liquid phase(s) identifier 
M Commingled quantity or flow 
MCM Monte Carlo Method 
MPFM Multi-phase flow meter 
Oil Oil phase identifier 
N Number of components 
P Pressure or production quantity 
ri,j Correlation coefficient between 

components i and j 

R Gas constant 
S Process factor 
T Temperature or total identifier 
TSM Taylor Series Method 
UBA Uncertainty Based Allocation 
U  Absolute uncertainty 
V Volume 
Wat Water phase identifier 
WLR Water liquid ratio 
x Fractional flow of Field A  
xi Input variable, i 
X Mass fraction or percent 
y Result of an equation 
α Field Alpha identifier 

β Field Bravo identifier 

Δ Imbalance 
ε  Relative uncertainty 

ρ Molar density 

θ Fractional absolute variance of 

Field A measurement 

ψ Fractional flow of Field A when 

Pro Rata and By Difference 
allocation uncertainties are equal 
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8 APPENDIX OF EQUATION DERIVATIONS 
 

8.1 Specific Form of Uncertainty Equation for Multiples and Quotients 
 
Consider an equation of the form: 

 
cba xxxky 321 ***  (54) 

 
Where y is calculated from a number of input variables x1, x2, etc. which may be raised to any 
power, a, b, etc and multiplied by a constant k. The powers can be negative representing 
quotient terms. 
 
In order to calculate the uncertainty in y, the sensitivity coefficients are required for each of 
the input variables, and these are obtained from the first order partial differentials of y with 
respect to x1, x2, etc. For example: 
 

cba xxxka
x

y
32

1
1

1

**** 



 (55) 

 
And so on for x2, etc. 
 
The square of the absolute uncertainty in y is given by: 
 

2
3

2

3

2
2

2

2

2
1

2

1

2 Ux
x

y
Ux

x

y
Ux

x

y
Uy 












































  (56) 

 
Substituting for the sensitivity coefficients: 
 

 

      2
3

21
321

2
2

2

3
1

21
2
1

2

32
1

1
2 UxxxxkcUxxxxkbUxxxxkaUy cbacbacba   ************

 (57) 
 
Dividing through by y

2
 and substituting Equation (54) on the right hand side: 

 

     
 2321

2
3

21
321

2
2

2

3
1

21
2
1

2

32
1

1

2

2

cba

cbacbacba

xxxk

UxxxxkcUxxxxkbUxxxxka

y

Uy

***

************  


 (58) 
 

Which simplifies to: 
 

2
3

2
3

2

2
2

2
2

2

2
1

2
1

2

2

2

x

Uxc

x

Uxb

x

Uxa

y

Uy ***
  (59) 

 
The left hand side of Equation (59) is equal to the square of the relative uncertainty of y and 

Ux1/ x1 is the relative uncertainty in x1 (εx1), etc. Hence Equation (59) reduces to: 

 

2
3

22
2

22
1

2 xcxbxay  ***  (60). 

 
8.2 Pro Rata Field A 

 
Allocated quantities employing the proportional method are given by: 
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













BA

A
A

PP

P
MA

 (61) 
and, 















BA

B
B

PP

P
MA

 (62)  
 
In order to calculate the uncertainty in AA, the sensitivity coefficients are required: 
 

 
x

PP

P

M

A

BA

AA 






 (63) 

 
 

     22

1

BA

B

BA

A

BAA

A

PP

PM

PP

P

PP
M

P

A










































 *
 (64) 

 
In an unbiased system, the expected value of M equals the sum of PA and PB, E[M] = E[PA + 
PB]. Hence Equation (64) simplified to: 

 
 x

PP

P

P

A

BA

B

A

A 
















1  (65) 

 
Similarly, 
 

 
x

PP

P
M

P

A

BA

A

B

A 




































2

 (66) 

 
 
The absolute uncertainty in AA is given by: 
 

    222222 1 BAA UPxUPxUMxUA   (67) 

 
And relative uncertainty in AA by: 
 

   2222 1 BPAPMAA x ,,,   (68) 

 
 
8.3 By Difference Field B 

 
When employing the By Difference approach, the allocated quantities are given by: 
 

AA PA   (69)

  
 
for Field A and for Field B by difference, 
 

AB PMA   (70)

  
In order to calculate the uncertainty in AB, the sensitivity coefficients are required: 
 

1




M

AB  (71) 
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1




A

B

P

A
 (72) 

 
The absolute uncertainty in AB is given by: 
 

  2222 11 AB UPUMUA   (73) 

 
And relative uncertainty in AB by: 
 

 x

x APM

BA





1

222
,

,  (74). 

 
8.4 Uncertainty Based Allocation Field A 

 
When employing the UBA approach, the allocated quantities are given by: 
 

 *AA PA  (75) 

 

   *1BB PA  (76) 

Where, 

BA PPM   (77) 

 

And θ is:  

 

2222

22

22

2

BBAA

AA

BA

A

PP

P

ee

e







  (78) 

 
Substituting in (77) and (78) Equation (75):  

 

 BA

BBAA

AA
AA PPM

PP

P
PA 


















 *

2222

22

 (79) 

 
In order to calculate the uncertainty in AA, the sensitivity coefficients are required: 
 






M

AA  (80) 

 

   
 

  


























22222

43

2222

2
212

11

BBAA

AA

BBAA

AA
BA

A

A

PP

P

PP

P
PPM

P

A **
**  (81) 

 
In an unbiased system, the expected value of M equals the sum of PA and PB, E[M] = E[PA + 
PB] and hence E[M – (PA + PB)] = 0. Hence Equation (81) can be reduced to: 
 





1

A

A

P

A
 (82) 

 
Similarly, 
 

   
 

  





















22222

22221
1

BBAA

BBAA
BA

B

A

PP

PP
PPM

P

A **
**  (83) 

 
Since E[M – (PA + PB)] = 0, 
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




B

A

P

A
 (84) 

 
The measurement uncertainties are also inputs to the UBA equation and there will be 
uncertainties in the uncertainties, hence calculating the sensitivity coefficient with respect to 

εB: 

 

 
 

  





















22222

22221

BBAA

BBAA
BA

B

A

PP

PP
PPM

A **
*  (85) 

 
But since E[M – (PA + PB)] = 0, 
 

0




B

AA
 (86) 

 

A similar result is obtained for the sensitivity coefficient with respect to εA. Surprisingly, this 

means the uncertainty in AA is not sensitive to the uncertainties in εA and εB. 

 
However, this is not completely true as the E[M – (PA + PB)] = 0 is not strictly the same as the 
expectation value of the whole right hand term: 
  

 
 

  
































22222

22221

BBAA

BBAA
BA

PP

PP
PPME

**
*   

 

which strictly should be considered. However, for reasonable estimates of εA and εB, the 

above approximation holds and the absolute uncertainty in AA is given by: 
 

  222222 1 ABA UPUPUMUA   (87) 

 
The relative uncertainty in Field A’s allocation is given by: 
 

   

x

xx BPAPM

AA

22222222 11 ,,
,


  (88) 

 


